

Öffentliche Ringvorlesung WS 2014/2015

Was - Wie - Wofür studieren?

Biodiversität und Biologische Ressourcen

Prof. Dr. Kai Jensen

Fachbereich Biologie

Gliederung

Biodiversität

- Was ist das eigentlich?
- Verbreitung von Biodiversität
- Ist Biodiversität bedeutsam?
- Biodiversitätsforschung am Fachbereich Biologie

Biologische Ressourcen

- Was sind Biologische Ressourcen?
- Ökosystemdienstleistungen als Biologische Ressourcen
- Forschung zu Biologischen Ressourcen am Fachbereich Biologie

Studiengänge des Fachbereichs Biologie (Schwerpunkt BBR)

- BSc und MSc Biologie
- MSc MARSYS
- BSc und MSc Holzwirtschaft

Angewandte Pflanzenökologie: Biodiversität und Ökosystemfunktionen

Zusammenfassung und Ausblick

Biologie - warum?

Die **Biologie** ist eine **Leitwissenschaft** des 21. Jahrhunderts, weil sie zur Lösung globaler Herausforderungen wie

- dem Schutz Biologischer Vielfalt,
- der Sicherung der Nahrungsmittelversorgung,
- der Bekämpfung von Krankheiten

von zentraler Bedeutung ist.

Der Fachbereich BIOLOGIE ...

- ... widmet sich in der Forschung den Schwerpunkten
 - Leitstrukturen der Zellfunktion,
 - Biodiversität und Biologische Ressourcen sowie
 - Organismische Interaktion, Infektion und Stress.
- … verknüpft Grundlagenforschung zu Fragen der Entstehung und Funktionalität biologischer Systeme mit angewandter Forschung zu Aspekten des Schutzes und der nachhaltigen Nutzung biologischer Ressourcen.
- ... arbeitet auf allen Ebenen der biologischen Organisation vom Molekül bis zum Ökosystem.

Standorte Fachbereich Biologie

Grindel: Zoologisches Institut

Hydrobiologie & Fischereiwissenschaft O

Was – Wie – Wofür Biologie studieren?

Und nun gibt es erst einmal einen Film

Gliederung

Biodiversität

- Was ist das eigentlich?
- Verbreitung von Biodiversität
- Ist Biodiversität bedeutsam?
- Biodiversitätsforschung am Fachbereich Biologie

Biologische Ressourcen

- Was sind Biologische Ressourcen?
- Ökosystemdienstleistungen als Biologische Ressourcen
- Forschung zu Biologischen Ressourcen am Fachbereich Biologie

Studiengänge des Fachbereichs Biologie (Schwerpunkt BBR)

- BSc und MSc Biologie
- BSc und MSc Holzwirtschaft
- MSc MARSYS

Angewandte Pflanzenökologie: Biodiversität und Ökosystemfunktionen

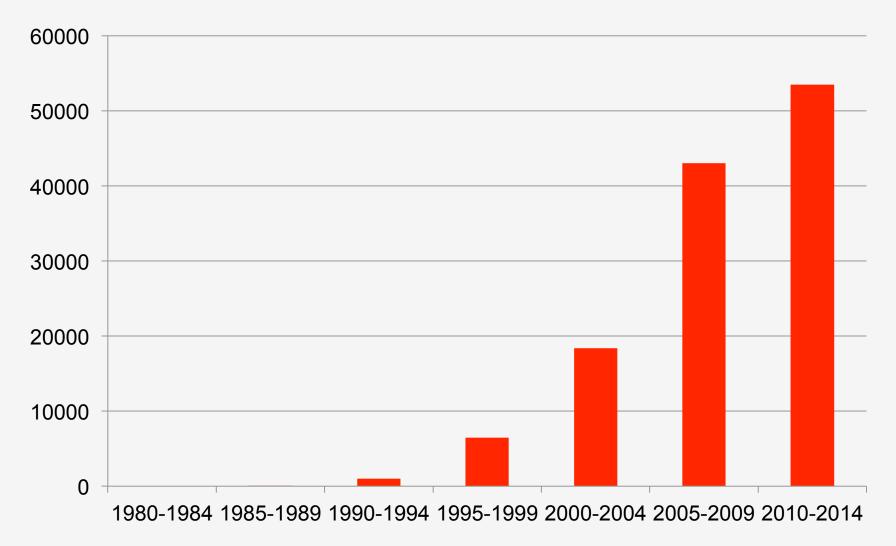
Zusammenfassung und Ausblick

Biodiversität: Was ist das eigentlich?

Der Begriff "Biodiversität"

- 1986 eingeführt als Kurzform von ,biological diversity
- 1992 Umweltgipfel in Rio de Janeiro: Verabschiedung einer Konvention zur Erhaltung der biologischen Vielfalt (Biodiversitätskonvention)

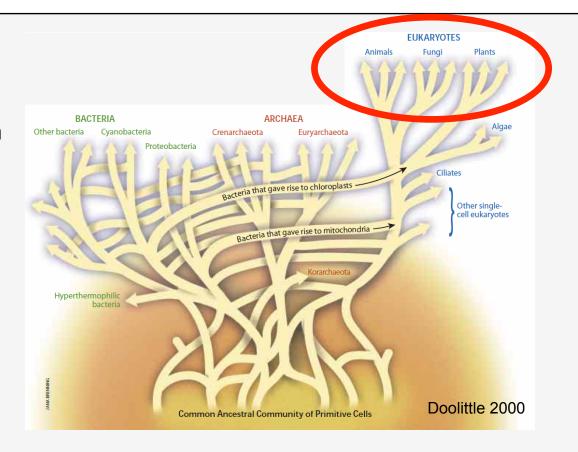
Definition


- Biodiversität beschreibt die Variabilität innerhalb von Arten, zwischen Arten und zwischen Lebensräumen
 - Genetischer Aspekt Vielfalt innerhalb von Arten
 - Arten Aspekt Vielfalt an Arten
 - Ökosystem Aspekt Vielfalt von Lebensgemeinschaften

Wissenschaftliche Publikationen zu "Biodiversity"

Biodiversität: Was ist das eigentlich?

Anzahl Publikationen zu "Biodiversity" in ISI Web of Science



Biodiversität – Inhaltliche Ebenen

Phylogenetische Ebenen

- Bakterien
- Archaebakterien
- Algen
- Pflanzen
- Pilze
- Tiere

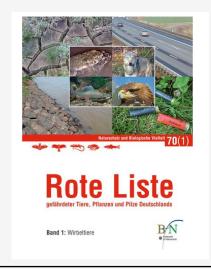
Anzahl und Verteilung von Entitäten

Beispiel: Gemeinschaft aus 10 Arten

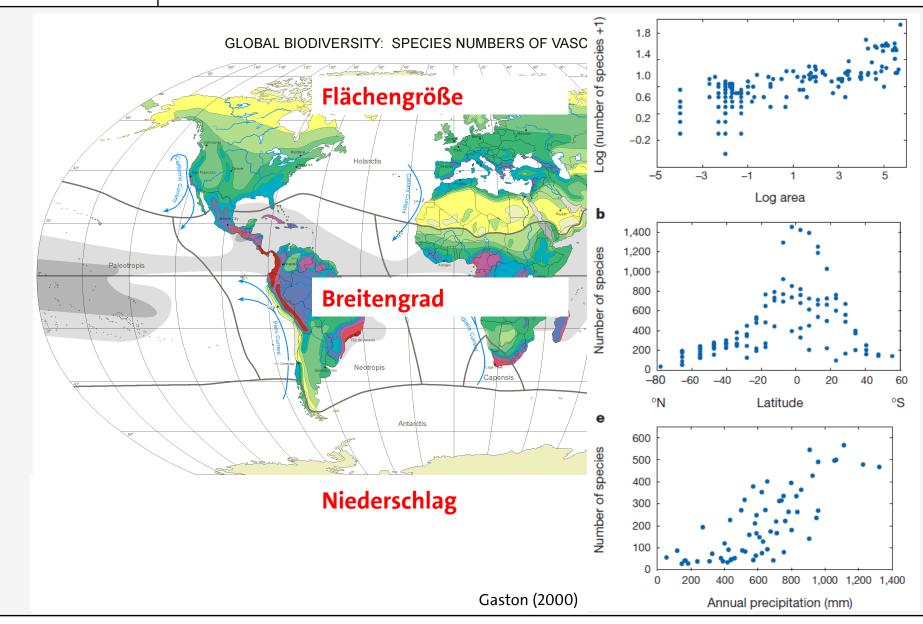
Diversitäts-Maße (Shannon-Index; Evenness)

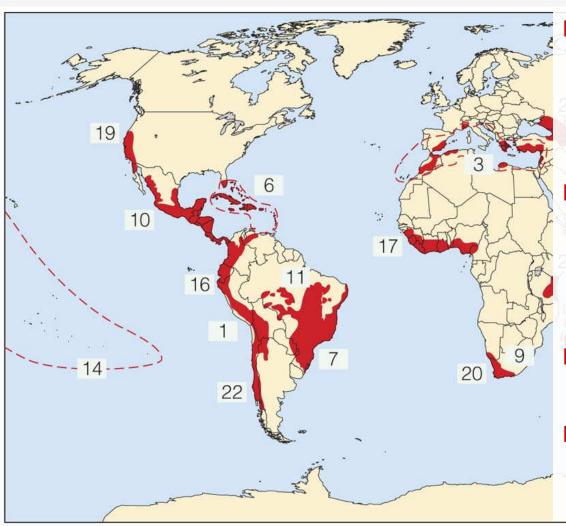
Biodiversitätsschutz – Inhaltliche Ebenen

Qualitative Aspekte


- Typisch versus untypisch
 Indigene Arten und Neobiota
 Landschaftsspezifische / nicht-landschaftsspezifische Arten
 Waldarten und Störungszeiger
- Selten versus häufig
 Verbreitung: Endemische Arten und Kosmopoliten
 Populationsgröße: kleine oder große Populationen
 Populationstrend: Zurückgehend oder zunehmend
 Gefährdungsstatus: RL-Art oder ungefährdet

Kai Jensen





Globale Verbreitung der Biodiversität

Globale Hotspots der Biodiversität

Definition

- mindestens 1500 endemische Pflanzenarten
- Biogeographische Abgrenzung

Hotspots enthalten...

- 44% der Pflanzenarten
- 35% der Amphibien, Reptilien, Vögel und Säugetiere

Hotspots bedecken...

1,4% der Landfläche

Hotspots haben...

 88% der ursprünglichen Vegetation verloren

Smith & Smith (2009); nach Myers et al. (2000)

Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Ist Biodiversität bedeutsam?

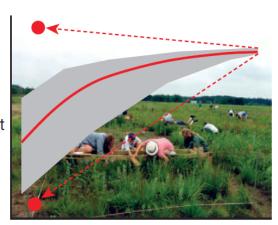
Biodiversitäts-Experimente Cedar Creek (USA), Biodepth (EU)

Deutschland: Jena Experiment seit 2002, 10 ha Diversität manipuliert 1, 2, 4, 8, 16 and 60 Pflanzenarten

Mit zunehmender Diversität steigt...

- die Produktivität (Roscher et al. 2005)
- die Rate der Kohlenstoff-Festlegung im Boden (Steinbeiss et al. 2008)
- die Komplexität der Bodenfauna-Gemeinschaften (Scherber et al. 2010)
- die Aktivität von Bienen (Ebeling et al. 2008)
- die Stickstoff-Speicherung im Boden (Oelmann et al. 2011)
- die mikrobielle Aktivität (Rosenkranz et al. 2012)
- die Resistenz gegenüber Invasionen (Petermann et al. 2010)

Hohe funktionelle und phylogenetische Diversität wichtiger als Artenvielfalt (Roscher et al. 2012, Milcu et al. 2013)


Ist Biodiversität bedeutsam?

Biodiversity loss and its impact on humanity

Bradley J. Cardinale¹, J. Emmett Duffy², Andrew Gonzalez³, David U. Hooper⁴, Charles Perrings⁵, Patrick Venail¹, Anita Narwani¹, Georgina M. Mace⁶, David Tilman⁷, David A. Wardle⁸, Ann P. Kinzig⁵, Gretchen C. Daily⁹, Michel Loreau¹⁰, James B. Grace¹¹, Anne Larigauderie¹², Diane S. Srivastava¹³ & Shahid Naeem¹⁴

!! JA !!

Ecosystem
function
(resource capture,
biomass production,
decomposition, nutrient
recycling)

Biological diversity (variation in genes, species, functional traits)

Biodiversitätsforschung am FB Biologie

Zoologie

- Evolutionsbiologie der Tiere (Prof. Dr. S. Dobler)
- Tierökologie (Prof. Dr. J. Ganzhorn)
- Funktionale und Molekulare Ökologie (NN, 2015)
- Verhaltensbiologie (Prof. Dr. J. Schneider)
- Populationsgenetik (Jun-Prof. Dr. M. Cordellier)

Botanik und Mikrobiologie

- Klassische und Molekulare Systematik (Prof. Dr. J. Rohwer)
- Biodiversität und Vegetationsökologie (Prof. Dr. N. Jürgens)
- Aquatische Ökophysiologie und Phykologie (Prof. Dr. D. Hanelt)
- Angewandte Pflanzenökologie (Prof. Dr. K. Jensen)
- Mikrobielle Konsortien (Jun-Prof. Dr. M. Perner)
- Modellierung von Biodiversität (Jun-Prof. NN, 2016)

Hydrobiologie

- Biologische Ozeanographie, Zooplankton (Prof. Dr. M. Peck)
- Biologische Ozeanographie, Phytoplankton (NN, 2015)

Biologische Sammlungen

- Centrum für Naturkunde: Zoologisches Museum (Prof. Dr. M. Glaubrecht, Prof. Dr. A. Brandt, Prof. Dr. A. Haas)
- Botanischer Garten, Herbarium Hamburgense, Museum für Nutzpflanzen (NN, 2016)

Gliederung

Biodiversität

- Was ist das eigentlich?
- Verbreitung von Biodiversität
- Ist Biodiversität bedeutsam?
- Biodiversitätsforschung am Fachbereich Biologie

Biologische Ressourcen

- Was sind Biologische Ressourcen?
- Ökosystemdienstleistungen als Biologische Ressourcen
- Forschung zu Biologischen Ressourcen am Fachbereich Biologie

Studiengänge des Fachbereichs Biologie (Schwerpunkt BBR)

- BSc und MSc Biologie
- MSc MARSYS
- BSc und MSc Holzwirtschaft

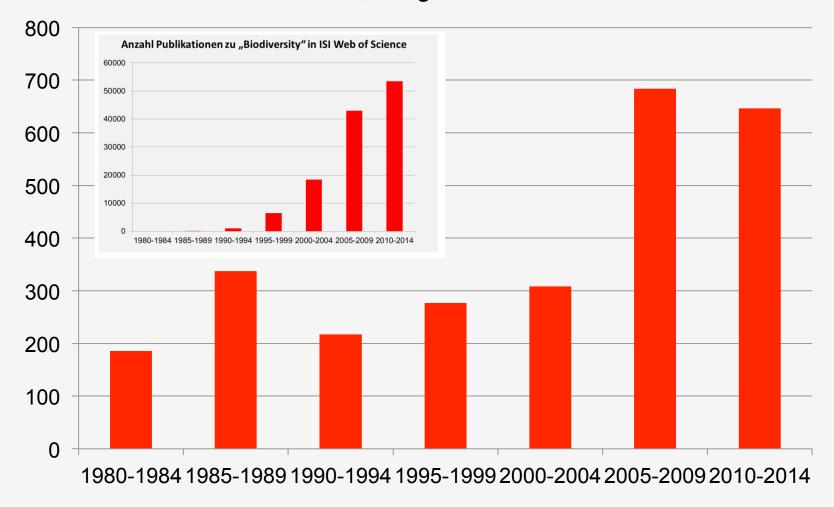
Angewandte Pflanzenökologie: Biodiversität und Ökosystemfunktionen

Zusammenfassung und Ausblick

Biologische Ressourcen

Was sind Biologische Ressourcen?

 Der Begriff Biologische Ressourcen bezeichnet "Organismen oder Teile davon, Populationen oder einen anderen biotischen Bestandteil von Ökosystemen, die einen tatsächlichen oder potentiellen Nutzen oder Wert für die Menschheit haben" (CBD 1992)


Beispiele

- Landwirtschaft: Nutzpflanzen (Weizen, Mais, Reis ...) und Nutztiere (Rinder, Schweine, Schafe...)
- Forstwirtschaft: Gehölze bzw. Holz als Grundlage für Roh-, Bau- und Werkstoffe
- Fischerei: Aquatische Organismen wie Algen, Fische, Krebstiere
- Biotechnologie: Nutzung von Biomolekülen wie Enzymen, von Zellen oder von ganzen Organismen in technischen Anwendungen

Biologische Ressourcen

Anzahl Publikationen zu "Biological Resource/s" in ISI Web of Science

Biologische Ressourcen

Was sind Biologische Ressourcen?

 Der Begriff Biologische Ressourcen bezeichnet "Organismen oder Teile davon, Populationen oder einen anderen biotischen Bestandteil von Ökosystemen, die einen tatsächlichen oder potentiellen Nutzen oder Wert für die Menschheit haben" (CBD 1992)

Beispiele

- Landwirtschaft: Nutzpflanzen (Weizen, Mais, Reis ...) und Nutztiere (Rinder, Schweine, Schafe...)
- Forstwirtschaft: Gehölze bzw. Holz als Grundlage für Roh-, Bau- und Werkstoffe
- Fischerei: Aquatische Organismen wie Algen, Fische, Krebstiere
- Biotechnologie: Nutzung von Biomolekülen wie Enzymen, von Zellen oder von ganzen Organismen in technischen Anwendungen
- Natürliche Ökosysteme: Bereitstellung von Ökosystemdienstleistungen

Ökosystemdienstleistungen

MILLENNIUM ECOSYSTEM ASSESSMENT

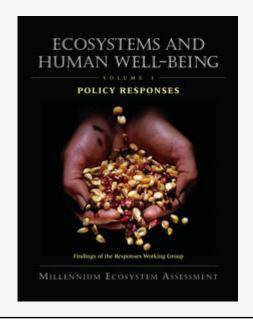
ome About

bout Reports

Newsroom

Resources

Contacts

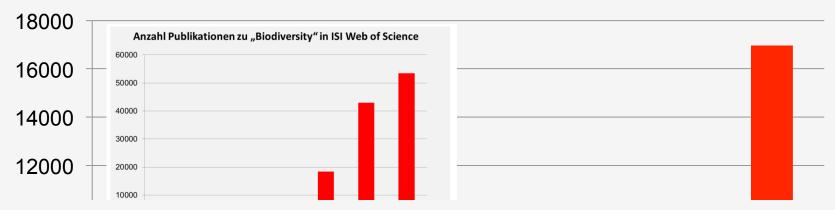

Sitemap

Millennium Ecosystem Assessment (MEA)

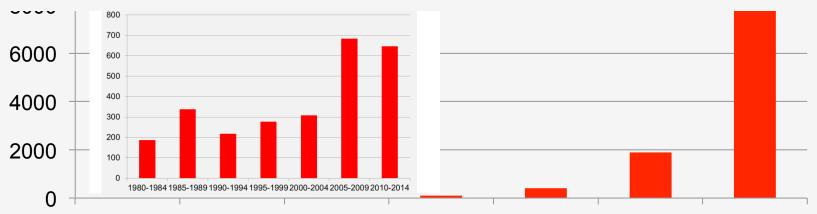
- Studie der Vereinten Nationen zur Beurteilung von Zustand und Funktionen von Ökosystemen
- mehr als 1.300 führende Fachleute weltweit beteiligt
- 2001 bis 2005
- Konzept der Ökosystem(dienst)leistungen (ÖSD)

The structure and functioning of the world's ecosystems changed more rapidly in the second half of the twentieth century than at any time in human history.

Ökosystemdienstleistungen



- Bereitstellende ÖSD: Natur stellt
 Nahrung, Holz, Fasern und genetische
 Ressourcen zur Verfügung
- Regulierende ÖSD: Ökosysteme regulieren Klima, Überflutungen, Krankheiten, Wasserqualität und Abfallbeseitigung
- Kulturelle ÖSD: Natur bietet
 Erholung, ästhetisches Vergnügen
 und spirituelle Erfüllung
- Unterstützende ÖSD: Natur unterstützt Bodenbildung, Nährstoffkreisläufe und Primärproduktion



Ökosystemdienstleistungen

Anzahl Publikationen zu "Ecosystem Service/s" in ISI Web of Science

Ist das Forschungsfeld "Biodiversität und Biologische Ressourcen" ein "emerging field"?

Biologische Ressourcen am FB Biologie

Botanik und Mikrobiologie

- Biodiversität der Nutzpflanzen (NN; i.V. Prof. Dr. A. Cierjacks)
- Aquatische Ökophysiologie und Phykologie (Prof. Dr. D. Hanelt)
- Mikrobiologie und Biotechnologie (Prof. Dr. W. Streit)
- Phytopathologie, Energiepflanzen (Jun-Prof. Chr. Voigt)

Hydrobiologie und Fischereiwissenschaften

- Fischereiwissenschaften (Prof. Dr. A. Temming)
- Fischereiwissenschaften (Prof. Dr. Chr. Möllmann)

Zentrum Holzwirtschaft

- Weltforstwirtschaft (Prof. Dr. M. Köhl)
- Ökonomie (Prof. Dr. U. Mantau)
- Holzbiologie (Prof. Dr. J. Fromm, Prof. Dr. E. Magel)
- Chemische Holztechnologie (Prof. Dr. B. Saake)
- Mechanische Holztechnologie (Prof. Dr. J. B. Ressel; Prof. Dr. A. Krause)

Ökosystemdienstleistungen

- Entomologie (Centrum f
 ür Naturkunde)
- Landnutzung und Biodiversität (BZF: Biodiversität und Vegetationsökologie, Angewandte Pflanzenökologie)

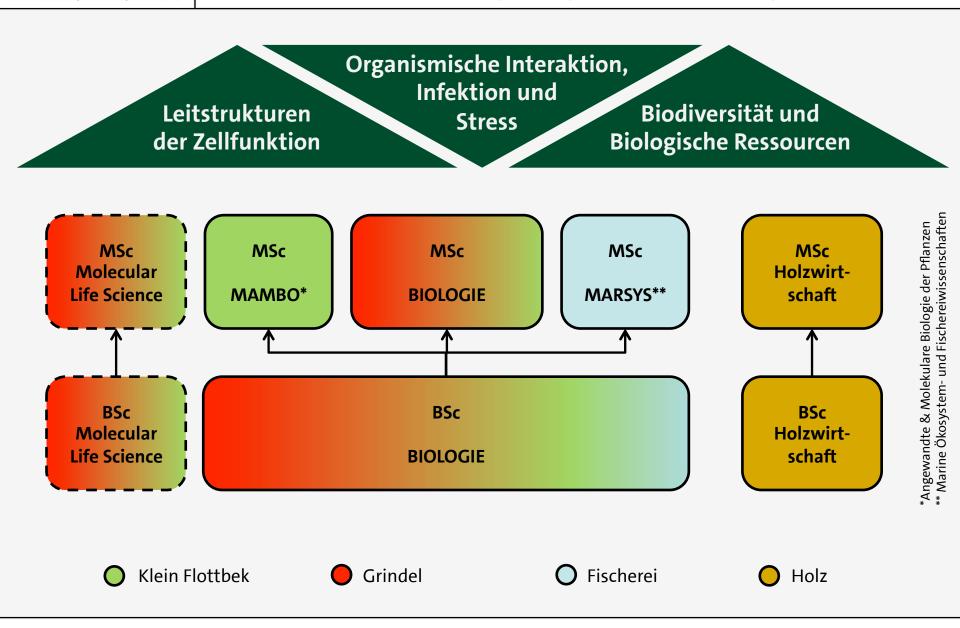
Gliederung

Biodiversität

- Was ist das eigentlich?
- Verbreitung von Biodiversität
- Ist Biodiversität bedeutsam?
- Biodiversitätsforschung am Fachbereich Biologie

Biologische Ressourcen

- Was sind Biologische Ressourcen?
- Ökosystemdienstleistungen als Biologische Ressourcen
- Forschung zu Biologischen Ressourcen am Fachbereich Biologie

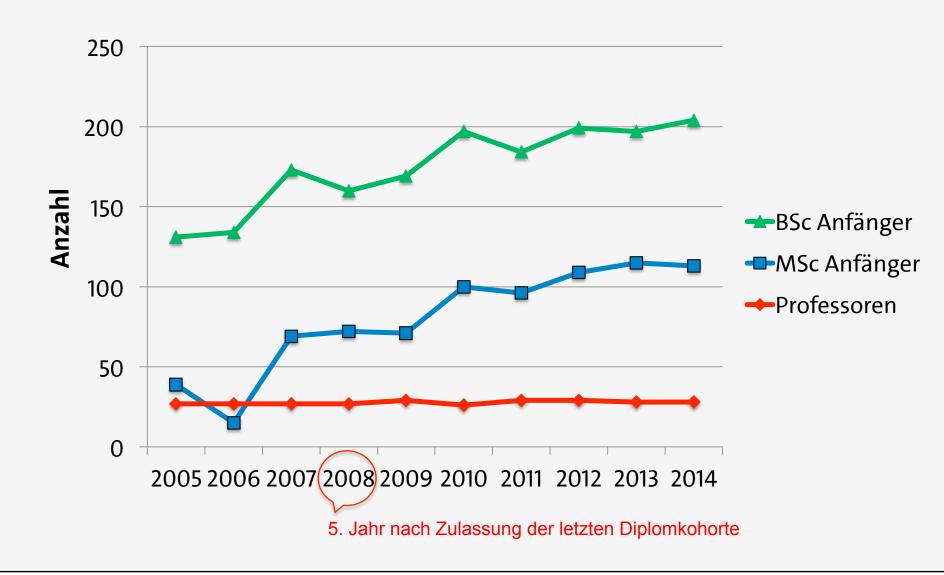

Studiengänge des Fachbereichs Biologie (Schwerpunkt BBR)

- BSc und MSc Biologie
- MSc MARSYS
- BSc und MSc Holzwirtschaft

Angewandte Pflanzenökologie: Biodiversität und Ökosystemfunktionen

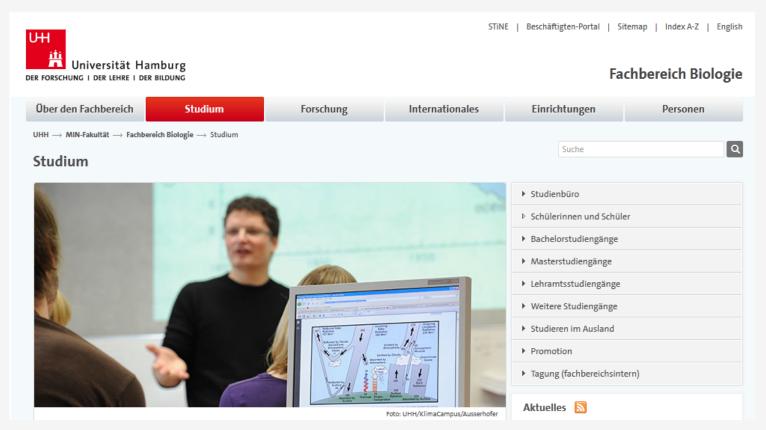
Zusammenfassung und Ausblick

Studiengänge FB Biologie


Lehre im FB Biologie

Unser Motto: Bildung mit Bologna

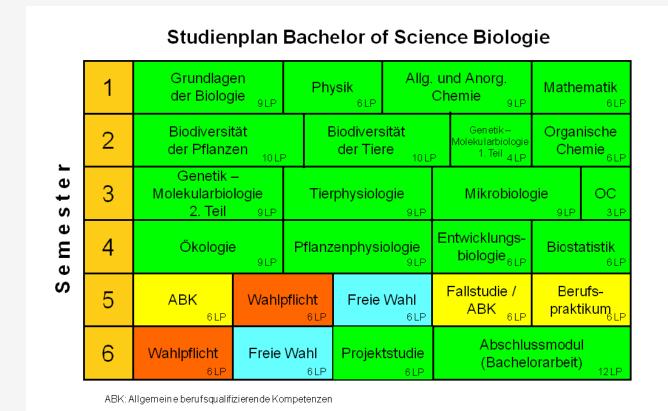
Anfängerzahlen FB Biologie



Studiengänge FB Biologie

Studiengänge mit Schwerpunkt "Biodiversität und Biologische Ressourcen"

- BSc und MSc Biologie
- BSc und MSc Holzwirtschaft
- MSc Marine Ökosystem- und Fischereiwissenschaften



www.biologie.uni-hamburg.de

BSc Biologie

- Naturwissenschaftliche Grundlagen: Mathe, Physik, Chemie, Biologie
- Vielfalt des Lebens: Biodiversität der Pflanzen und der Tiere
- Grundlagen des Lebens: Genetik, Physiologie, Molekularbiologie
- Leben in komplexen Systemen: Mikrobiologie, Ökologie
- Vertiefung und Spezialisierung: 5. und 6. Fachsemester

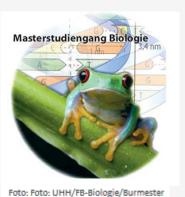
Kai Jensen

MSc Biologie

Ein Studiengang = Drei Schwerpunkte:

- Biodiversität und Ökologie (BÖ)
- Evolution und Systematik (ES)
- Molekulare Biologie und Biotechnologie (MBB)
- => reflektiert Vielfalt der Biologie
- => erlaubt gleichzeitig individuelle Spezialisierung

Studium der 1000 Möglichkeiten



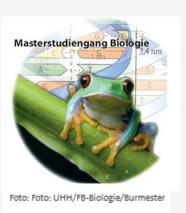
Biodiversität und Ökologie

- Ziel: Erwerb der Fähigkeiten, qualitative und quantitative Daten im Feld und im Experiment zu erheben, auszuwerten und vor verschiedenen, z.B. evolutionsbiologischen, aber auch managementorientierten Hintergründen zu bewerten.

- Schwerpunkte der Ausbildung: Ökologie, Biodiversitätsforschung, etc.
- mögliche Berufsfelder: aktive und planerische Arbeiten im nationalen und internationale Natur- und Artenschutz; Behörden, Umweltverbände, Planungsbüros.

Was müssen Ökologen können?

- Arten- und Biotoptypen-Kenntnisse
- Kenntnisse in Ökologie
- Kenntnisse aus den Bereichen der Nachbarwissenschaften
- ,Geländegängigkeit' und Belastbarkeit
- Teamfähigkeit
- Improvisationsvermögen
- Bereitschaft/Fähigkeit zu allgemeinverständlicher Publikation von Ergebnissen
- Verantwortungsbewusstsein und Konfliktbereitschaft


Berufsfelder und -aussichten

- Umweltministerien und Umweltbehörden auf Landes- und Bundesebene
- Internationaler Naturschutz
- Umweltverbände (z.B. NABU, BUND, WWF)
- Biologische Stationen (Betreuung von Schutzgebieten)
- Forschungseinrichtungen (Universitäten, Max Planck Institute, Institute der Helmholtz Gesellschaft, Zentrum für Umweltforschung)
- Biologische Planungsbüros (z.B. Mitwirkung an Umweltverträglichkeits-untersuchungen)

Berufsfelder und -aussichten

Stellenmarkt

STUTTGART

Ihre Zukunft

Mit ihren 18 000 Mitarbeiterinnen und Mitarbeitern ist die Landeshauptstadt viertgrößte Arbeitgeberin in der Region Stuttgart. Sie sucht Fachleute verschiedenster Ausrichtung und bietet berufliche Vielfalt mit Perspektive, ein integratives und tolerantes Klima sowie variable Teilzeitmodelle.

Der Landeshauptstadt Stuttgart ist eine vielfältige Personalstruktur und die Gleichstellung aller Mitarbeiterinnen und Mitarbeiter sehr wichtig. Wir begrüßen deshalb Bewerbungen von Frauen und Männern, unabhängig von ethnischer Herkunft sowie von Alter, Religion, Weltanschauung, Behinderung oder sexueller Identität. Schwerbehinderte Bewerber/-innen werden bei entsprechender Eignung vorrangig berücksichtigt. Teilzeitarbeit ist grundsätzlich möglich. Für Tandembewerbungen sind wir offen.

Wir suchen für das Amt für Umweltschutz, Abteilung Umweltberatung und Naturschutz, Sachgebiet "Untere Naturschutzbehörde, fachliche

Diplombiologen/-in bzw. Master of Science mit ökologischem Schwerpunkt

zum 1. luni 2014 als Sachbearbeiter/-in

Landeshauptstadt München

Verantwortung

Die Landeshauptstadt München sucht für das Referat für Stadtplanung und Bauordnung zum nächstmöglichen Zeitpunkt einen/eine

Teamleiter/in Flächenhafter Naturschutz

Die Qualitäten Münchens als lebenswerten Wohn-, Arbeits- und Freizeitort, überregionales Wirtschaftszentrum, bedeutenden Wissenschafts-, Forschungs- und Bildungsstandort sowie Kulturzentrum europäischen Formats zu sichern und zu

Der Regionalverband FrankfurtRheinMain ist eine Körperschaft chen Rechts und vertritt 75 Kommunen des Rhein-Main-Gebiete samt ca. 2.2 Millionen Einwohnern.

Aus: Natur und Landschaft 2014

Für unseren Bereich Flächennutzungsplanung/Landschaftsplanung ger Abteilung Planung suchen wir zum 1. Mai 2014 eine/einen

Dipl.-Ing./Master Landschaftsplaner/in

(Konnziffor 0252)

Das Aufgabenfeld umfasst vo Entwicklung methodischer lar Begleitung aller Standorte bei fachlichen Entwicklung von P Frankfurt/Rhein-Main.

Ihre Aufgaben:

Zu Ihren Aufgaben gehören im und landschaftsbezogenen Ent

- · Erarbeitung von Stellungnah lichen Planungsbeiträgen a
- fachliche Erstellung und Rev

Landschaftspflegeverband Sternberger Endmoränengebiet LSE e.V.

Der Landschaftspflegeverband Sternberger Endmoränengebiet LSE e.V. sucht im Landkreis Ludwigslust - Parchim für das Verbundprojekt

"Rotmilan-Maßnahmenmanagement durch Landschaftspflegeverbände"

ab dem nächst möglichen Termin

MIBRAG

Fachingenieur Umweltschutz (m/w)

Im Direktionsbereich Ingenieurdienste / Umweltschutz

Die MIBRAG steht als innovatives Bergbauunternehmen für den umweltschonenden und effizienten Umgang mit dem wertvollen Energieträger Braunkohle. Hauptgeschäftsfelder sind die Gewinnung und der Verkauf von Rohbraunkohle. MIBRAG ist zertifiziert als familienfreundliches Unternehmen, arbeitet sicher mit System und hat das Energiemanagement eingeführt.

Wir suchen ab sofort einen Fachingenieur / Umweltschutz (m/w).

Folgende Aufgaben erwarten Sie:

MEHR ALS NUR KOHLE.

Lösung von Aufgaben im Natur- und Artenschutz

Stadt Neumünster

Wir suchen für unseren Fachdienst Umwelt und Bauaufsicht ab 01.08.2014 eine

Fachdienstleiterin (m/w - TH/TU)

Nähere Informationen finden Sie unter www.neumuenster.de/stellenangebote.

Wir freuen uns auf Ihre Bewerbung!

Über 100 Berufe für Einsteiger, Aufsteiger und Umsteiger unter www.berufe-sh.de

Evolution und Systematik

Ziel: Verständnis evolutionsbiologischer Prozesse und ihren Ergebnisse von der genetischen Ebene über die des Individuums bis zu interagierenden Systemen.

Evolution, Allgemeine und molekulare Systematik, Verhaltensbiologie, Biodiversitätsforschung, Bioinformatik

mögliche Berufsfelder:

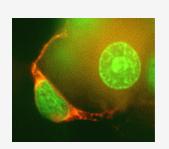
- genetische Analysen im Natur- und Artenschutz
- taxonomische Forschung an Museen
- medizinisch-pharmazeutische Forschung unter evolutionsbiologischen Gesichtspunkten.

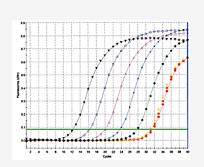
Foto: Foto: UHH/FB-Biologie/Burmester

Molekulare Biologie und Biotechnologie

Ziel: Erlernen molekularen und biochemischen Funktionsprinzipien mikrobieller, pflanzlicher und tierischer (auch menschlicher) Organismen und ihre praktische Anwendung.

Schwerpunkte der Ausbildung:


Tier- und Pflanzenphysiologie, Mikrobiologie, Genetik


mögliche Berufsfelder:

- biologisch-pharmazeutischen Industrie
- Medizintechnik
- Behörden

BSc und MSc Holzwirtschaft

Bachelor Holzwirtschaft (6 Semester)

- ✓ praxisnah
- ✓ international
- ✓ Exkursionen
- ✓ Betriebspraktika

Vielseitiges Holzwissen

Master Holzwirtschaft (4 Semester)

✓ enge Kooperation mit Forschungseinrichtung ✓ sehr gute technische Ausrüstung der Labore etc.

Spezialist mit Tiefgang

Studieninhalte Umwelt/Natur

- Botanik, Ökologie, Dendrologie
- Holzbiologie, Holzpathologie, Holzschutz
- Nutzhölzer, Holz- und /Forstwirtschaftsgeographie

Studieninhalte Wirtschaft

- Holzhandel
- Holzmärkte
- Marketing
- Forstwirtschaftslehre
- Betriebswirtschaft
- Volkswirtschaft
- Recht
- Arbeitswissenschaften

Studieninhalte Technik

- Holzphysik, Verfahrenstechnik
- Holzchemie, chem.
- Holztechnologie
- Mathe, Statistik, Konstruktion
- Chemie, Physik

Die Biologische Ressource Holz

BSc Holzwirtschaft

Semester-Anzahl Holzwirtschaftliche Berufe oder Fortsetzung des Studiums zum Master

6

Bachelorabschluss nach 6 Semestern

5

In 3 Semestern wird berufsqualifizierendes, spezifisches Wissen der Holzwirtschaft vermittelt.

4

Beinhaltet eine sechswöchige Bachelorarbeit.

3

In 3 Semestern werden die Grundlagen für das Studium in den Bereichen Biologie, Technologie, Ökonomie und Umwelt vermittelt.

2

1

MSc Holzwirtschaft

Masterabschluss nach 4 Semestern

10

9

8

7

Masterarbeit

Sechs Monate wissenschaftliche Arbeit im ausgewählten Schwerpunktfach

Berufsorientierte Spezialisierung

Dauer: Zwei Semester

Aus dem gesamten, umfangreichen Lehrangebot wählen die Studierenden zwei Schwerpunktfächer

Interdisziplinäre Einführung in die Holzwissenschaft

Dauer: Ein Semester

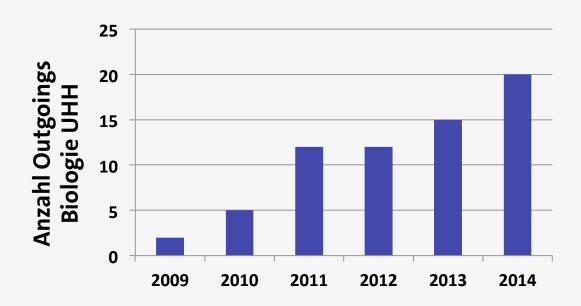
Alle Fachgebiete geben Einblick in wissenschaftliche Aspekte ihres Lehrgebietes

Berufsfelder Holzwirtschaft

MSc Marsys

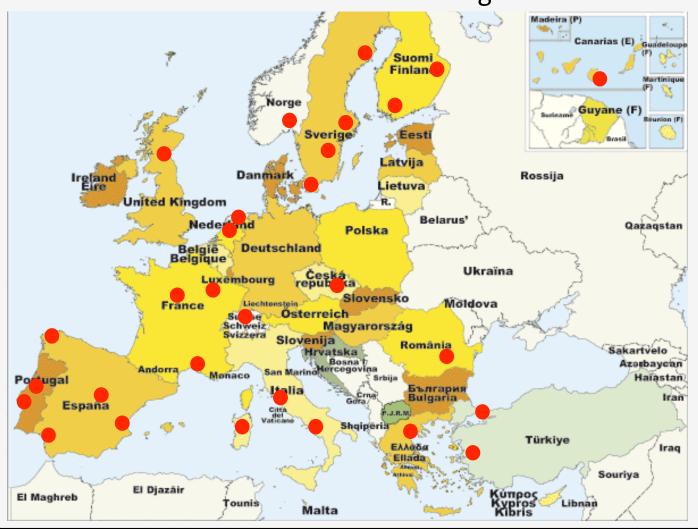
MSc Marine Ökosystem- und Fischereiwissenschaften

- Grundlegendes Wissen und spätere Spezialisierung in "Biologischer Ozeanographie" und/oder in "Fischereiwissenschaften"
- Funktionsweise mariner Ökosysteme
- Forschungsansatz aus Beobachtungen, Experimenten und numerischer Modellierung



Biologische Ressourcen des Meeres

Ins Ausland gehen? Ja!


- Neue Kulturen kennen lernen + eigene Kultur besser verstehen
- Sprachkenntnisse verbessern
- Zugang zu einem anderen Bildungssystem
- Kurse machen, die man zu Hause vielleicht nicht machen kann
- Prägung der Vita
- Experimentieren ,ohne Gefahr'
- Eigene Belastbarkeitsgrenzen erfahren
- Und nicht zuletzt: Die Welt entdecken!

ERASMUS: Partnerschaften FB Biologie

- Prinzipiell überall auf der Welt!
- Aktive ERASMUS-Partnerschaften der Biologie:

Gliederung

Biodiversität

- Was ist das eigentlich?
- Verbreitung von Biodiversität
- Ist Biodiversität bedeutsam?
- Biodiversitätsforschung am Fachbereich Biologie

Biologische Ressourcen

- Was sind Biologische Ressourcen?
- Ökosystemdienstleistungen als Biologische Ressourcen
- Forschung zu Biologischen Ressourcen am Fachbereich Biologie

Studiengänge des Fachbereichs Biologie (Schwerpunkt BBR)

- BSc und MSc Biologie
- MSc MARSYS
- BSc und MSc Holzwirtschaft

Angewandte Pflanzenökologie: Biodiversität und Ökosystemfunktionen

Zusammenfassung und Ausblick

Angewandte Pflanzenökologie

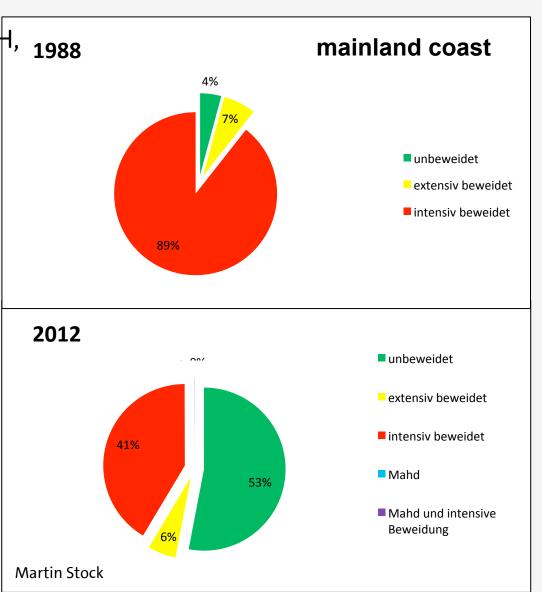
Welche Faktoren beeinflussen die Verbreitung von Biodiversität?
Wie beeinflusst Biodiversität Ökosystemfunktionen und -dienstleistungen?
Modellsysteme: Ästuarine Marschen und urbane Ökosysteme

Wir wollen mechanistische Zusammenhänge aufdecken, die das Vorkommen und die Verbreitung von Pflanzenarten sowie die Funktionalität von Ökosystemen erklären

www.biologie.uni-hamburg.de/de/biozentrum-klein-flottbek/forschung/apoe-jensen.html

Tidebeeinflusste Marschen

Von krautigen Pflanzen dominiertes Ökosystem im Einfluss der Gezeiten Hochspezialisierte Pflanzenarten (Stress durch Überflutung, Hypoxie; erhöhte Salinität), der Gezeiten Ökosystemdienstleistungen: Nährstofftransformation, Küstenschutz, Kohlenstoffspeicher



Wattenmeer-Nationalparke

- Ausweisung in 1990er Jahren; SH, NDS, HH
- Ziel: Natürliche Entwicklung!
- Salzmarschen: Aufgabe der Beweidung

To graze or not to graze?

Contents lists available at ScienceDirect

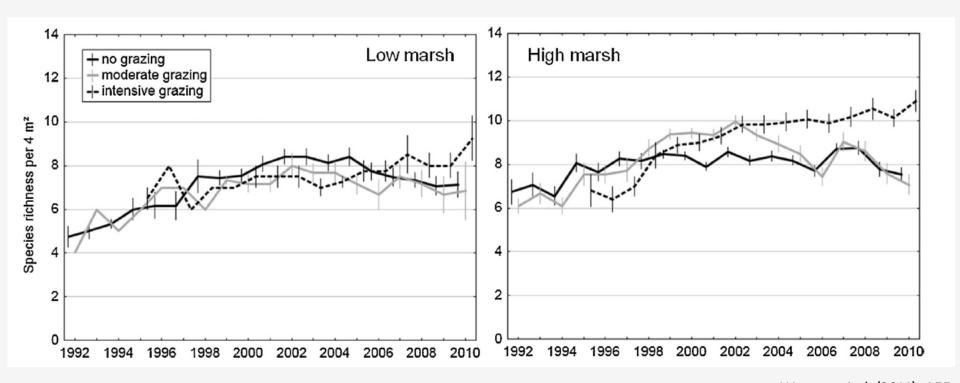
Agriculture, Ecosystems and Environment

journal homepage: www.elsevier.com/locate/agee

Scale matters: Impact of management regime on plant species richness and vegetation type diversity in Wadden Sea salt marshes

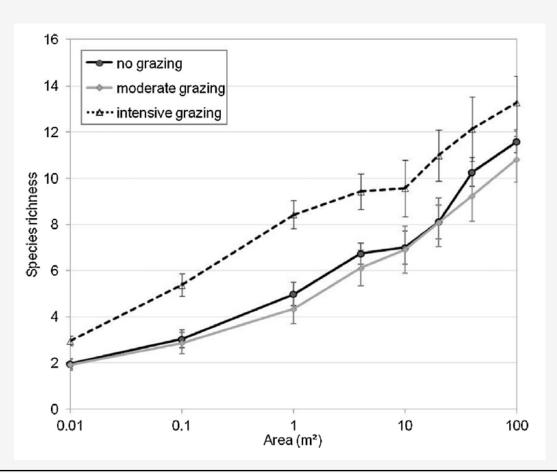
Antonia Wanner^{a,*}, Sigrid Suchrow^a, Kathrin Kiehl^b, Wiebke Meyer^b, Nina Pohlmann^a, Martin Stock^c, Kai Jensen^a

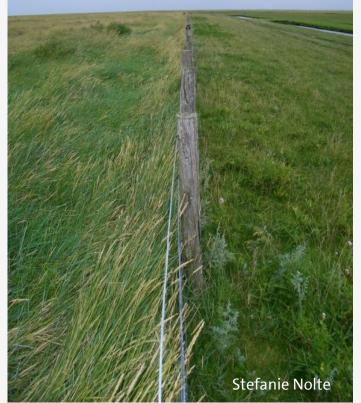
Entwicklung der Biodiversität bei unterschiedlicher Nutzung


- Artenvielfalt [1, 4 m²], Arten-Areal-Beziehung [ß-Diversität],
 Vielfalt an Vegetationstypen [Anzahl pro ha]
- Differenzierung von oberer und unterer Marsch
- Dauerflächen, TMAP Monitoring Vegetation

4 m²

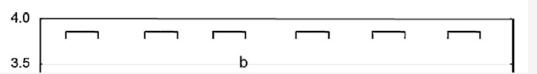
- Zunahme der Artenvielfalt in allen Nutzungsregimen
- untere Marsch: keine Unterschiede zwischen Nutzungsregimen
- obere Marsch: Höhere Artenzahl in intensiv beweideten Flächen




Kai Jensen

Arten-Areal-Beziehung

- Höhere Artenzahl bei intensiver Beweidung auf allen Flächengrößen
- ab 10 m² keine signifikanten Unterschiede



Wanner et al. (2014): AEE

1 ha

- Zunahme der Vielfalt der Vegetationstypen in allen Nutzungsregimen
- untere Marsch: Höhere Vielfalt der Vegetationstypen in unbeweideten Flächen

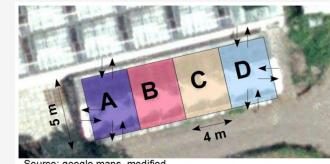

Nach Ausweisung des Nationalparks sind Artenvielfalt und Vielfalt der Vegetation

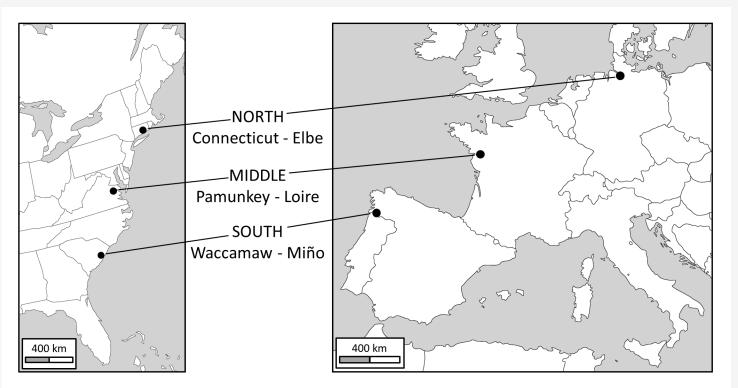
Keine konsistenten Unterschiede zwischen beweideten und unbeweideten Salzmarschen

angestiegen

FAZIT:

Mosaik unbeweideter und beweideter Salzmarschen ,optimiert' Biodiversität

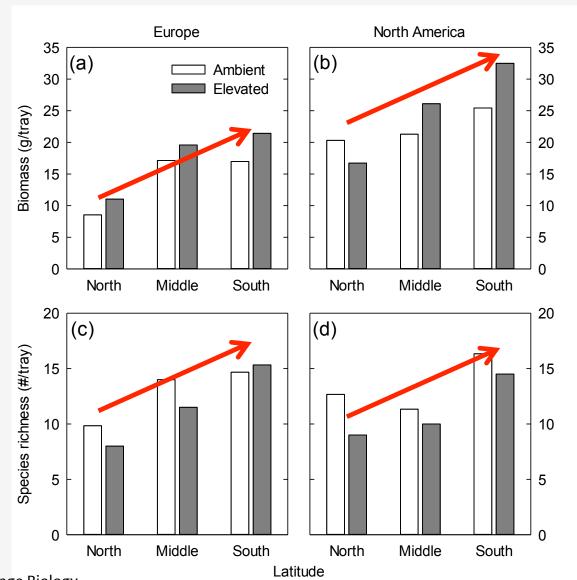

Wanner et al. (2014): AEE


KW und Biodiversität ästuariner Marschen

Methode

- Samenbank-Proben von Süßwasser-Marschen
- Gewächshaus-Experiment bei zwei Temperaturen (erhöht vs ambient)
- Biomasse und Artenvielfalt

Source: google maps, modified

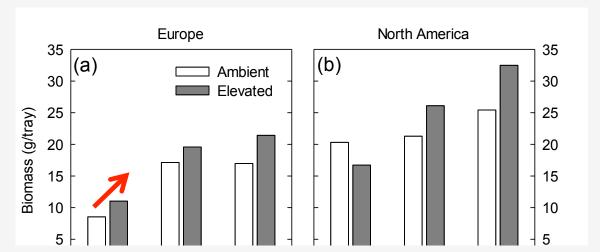

Baldwin, Jensen & Schönfeldt (2014): Global Change Biology

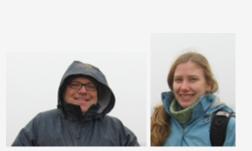
KW und Biodiversität ästuariner Marschen

Ergebnisse

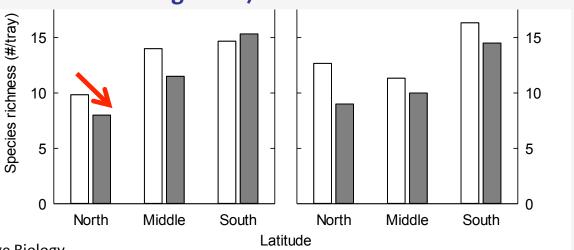
 Biomasse und Artenvielfalt steigen von Norden nach Süden

Kai Jensen


Baldwin, Jensen & Schönfeldt (2014): Global Change Biology

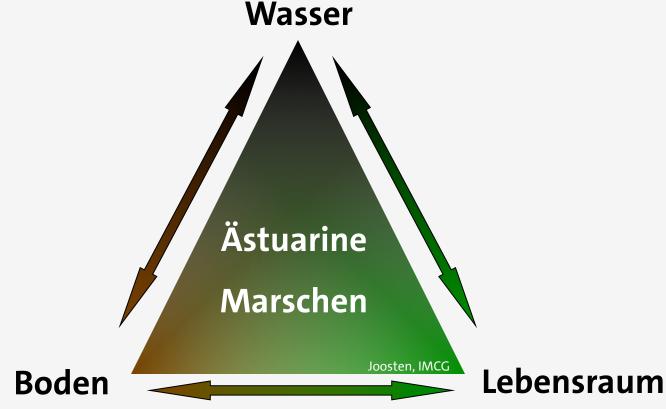

KW und Biodiversität ästuariner Marschen

Ergebnisse


- Biomasse und Artenvielfalt steigen von Norden nach Süden
- Biomasse steigt bei erhöhter Temperatur

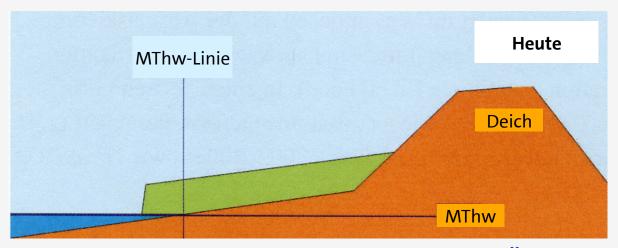
Klimawandel (erhöhte Temperatur) könnte Biodiversität tidebeeinflusster Süßwassermarschen vermindern (ohne ausreichende Migration) oder auch erhöhen (bei ausreichender Migration)

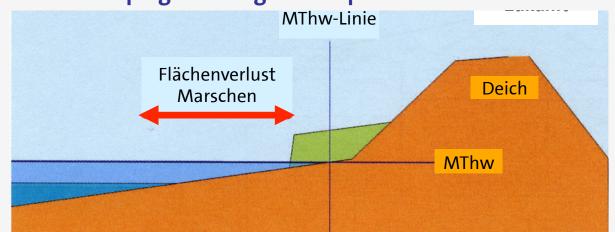
Kai Jensen



Baldwin, Jensen & Schönfeldt (2014): Global Change Biology

Ökosystemfunktionen und -dienstleistungen


Kohlenstoff-Akkumulation Stickstoff-Retention Biodiversität von Tieren und Pflanzen


Entwicklung ästuariner Marschen im KW

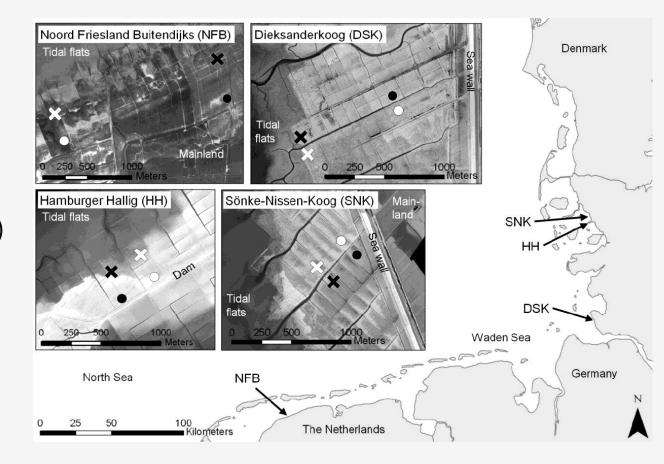
Messung Sedimentation

- Sedimentfallen
- Elbe-Ästuar: Süßwasser-, Brackwasser- und Salzmarschen
- Einflussfaktoren: SSC, Überflutung, Entfernung Marschkante + Priel,

Sind Akkretionsraten in tidebeeinflussten Marschen der Nordseeküste und der Ästuare ausreichend, um den Meeresspiegelanstieg zu kompensieren?

Schröder 2007, verändert

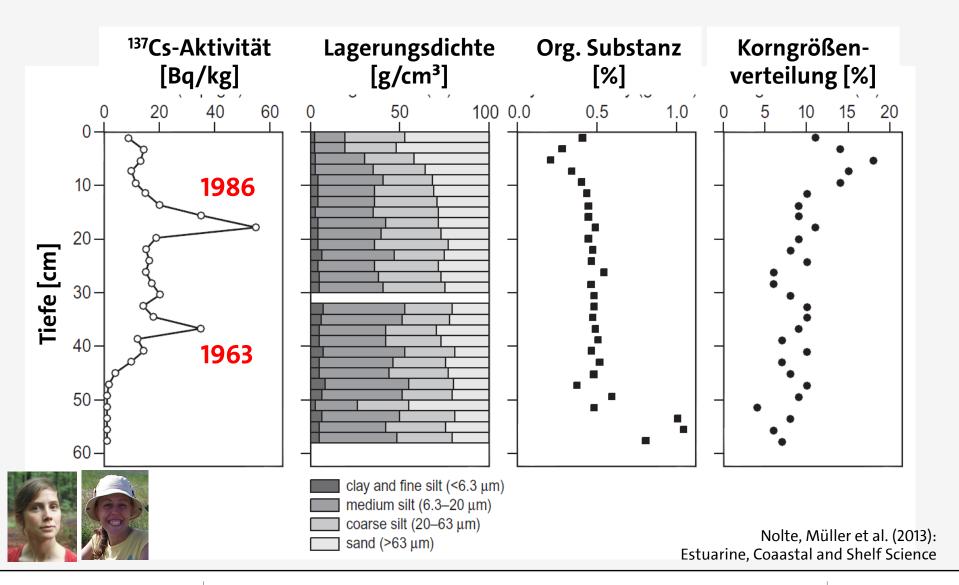
SLR und ästuarine Marschen


Frage

 Sind Sedimentationsraten ausreichend um SLR zu kompensieren?

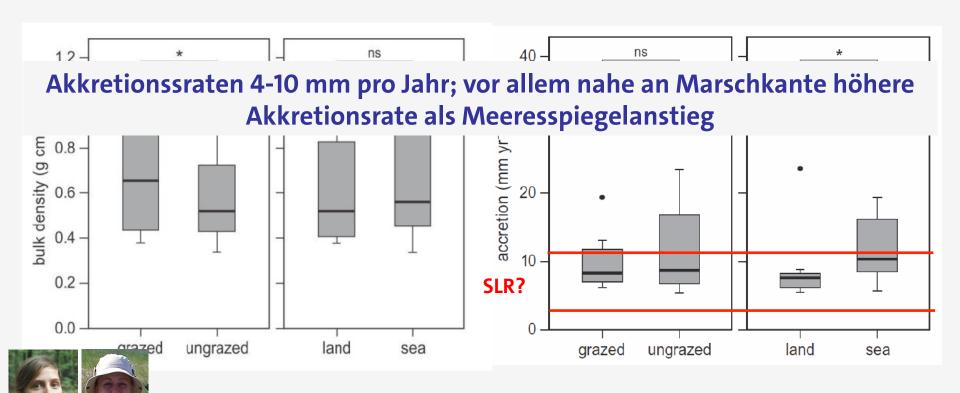
Methode

- 4 Salzmarschen
- 16 Bohrkerne, 60 cm
- ¹³⁷Cs Peak (1963; 1986)
- beweidet, unbeweidet
- deichnah, wattnah



Nolte, Müller et al. (2013): Estuarine, Coaastal and Shelf Science

SLR und ästuarine Marschen



SLR und ästuarine Marschen

Ergebnisse

- Lagerungsdichte: beweidet > unbeweidet
- Akkretion: wattnah > deichnah
- Akkretion: oft höher als SLR

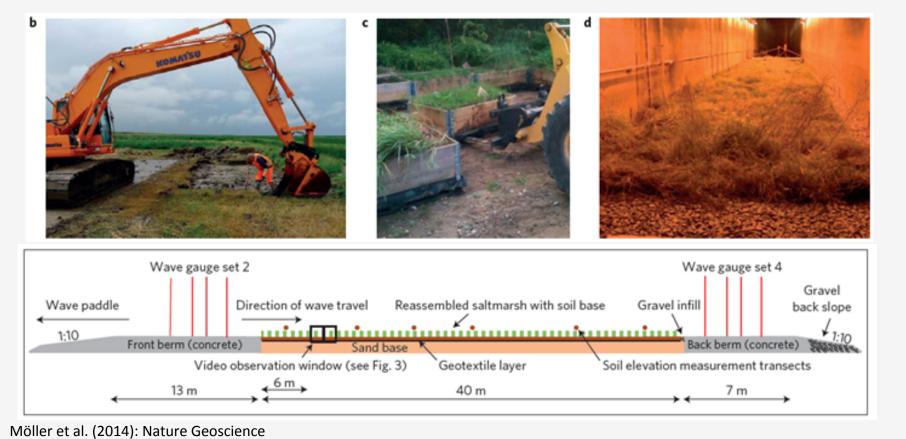
Nolte, Müller et al. (2013): Estuarine, Coaastal and Shelf Science

LETTERS

PUBLISHED ONLINE: 29 SEPTEMBER 2014 | DOI: 10.1038/NGEO2251

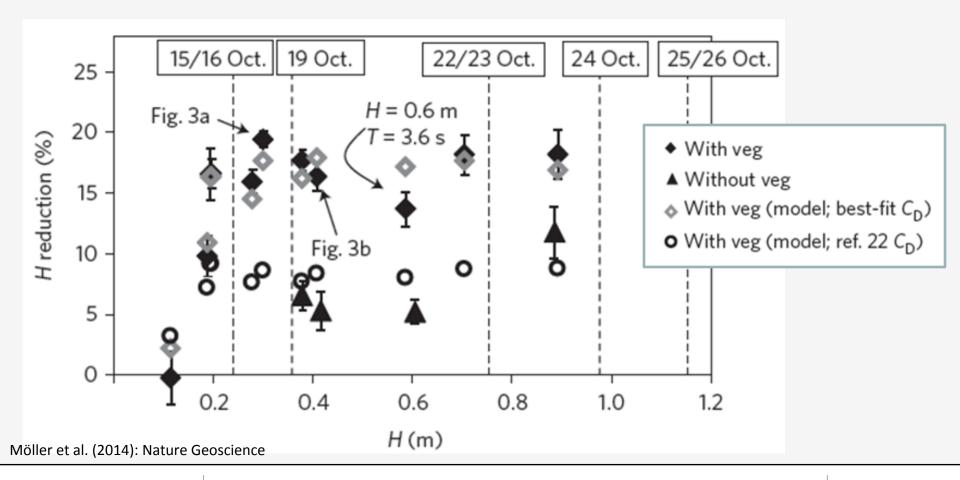
Wave attenuation over coastal salt marshes under storm surge conditions

Welchen Beitrag liefern Salzmarschen zur Dämpfung von Wellen unter Sturmflutbedingungen?


Möller et al. (2014): Nature Geoscience

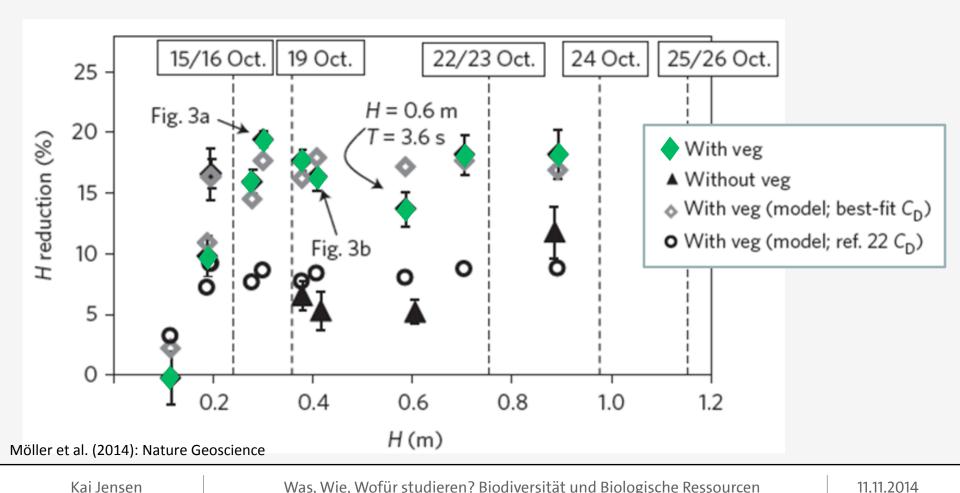
Methode

- Experiment im Großen Wellenkanal Hannover
- 200 m² Salzmarsch; 2 m Wassertiefe und 1 m Wellenhöhe
- Messung Wellenhöhen und -energie


Kai Jensen

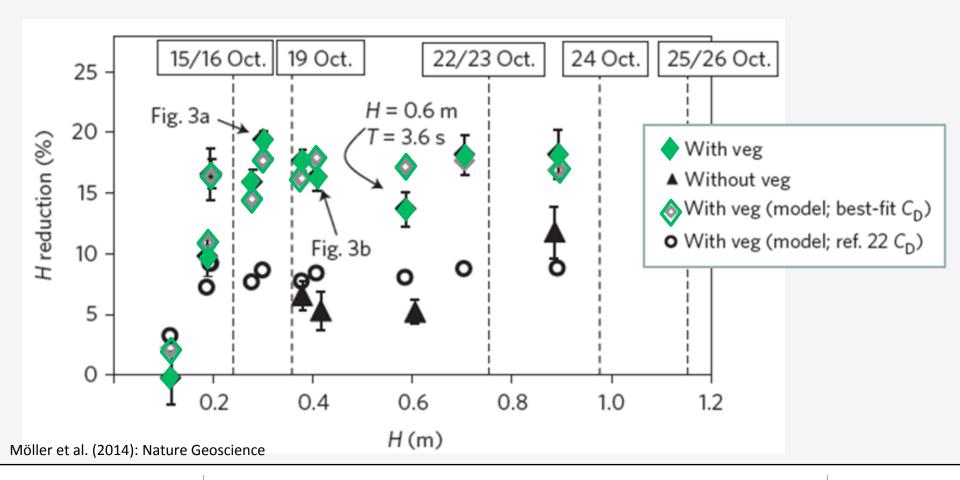
Ergebnisse

Bis zu 20% Reduktion Wellenhöhe bei 1m Wellenhöhe



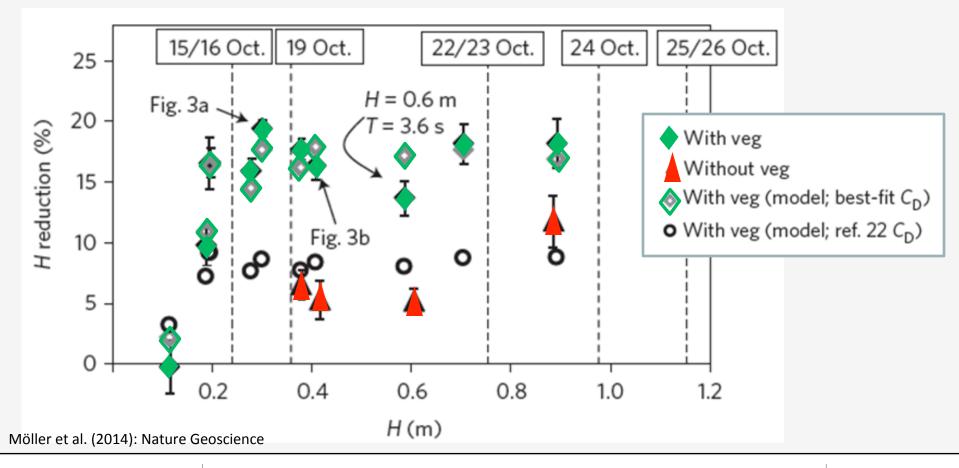
Ergebnisse

Bis zu 20% Reduktion Wellenhöhe bei 1m Wellenhöhe



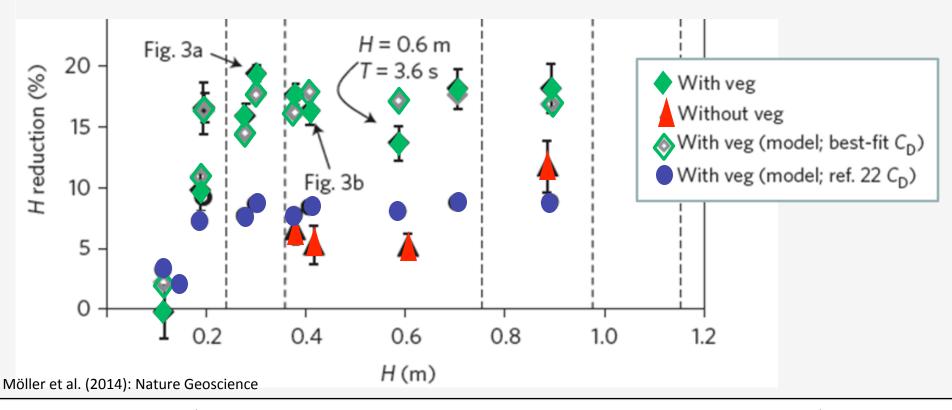
Ergebnisse

- Bis zu 20% Reduktion Wellenhöhe bei 1m Wellenhöhe
- Empirische Daten lassen sich durch Modellierung abbilden



Ergebnisse

- Bis zu 20% Reduktion Wellenhöhe bei 1m Wellenhöhe
- Empirische Daten lassen sich durch Modellierung abbilden
- Sehr viel geringere Wellenreduktion ohne Vegetation



Ergebnisse

- Bis zu 20% Reduktion Wellenhöhe bei 1m Wellenhöhe
- Empirische Daten lassen sich durch Modellierung abbilden
- Sehr viel geringere Wellenreduktion ohne Vegetation
- Starke Unterschätzung der Wellenreduktion durch bisherige Modelle

Zusammenfassung und Ausblick

Was studieren?

- Bsc und MSc Biologie
- BSc und MSc Holzwirtschaft
- MSc Marine Ökosystem- und Fischereiwissenschaften

Wie studieren?

- an der Universität Hamburg
- mit Spaß und Engagement
- neugierig, aufgeschlossen und kritisch

Wofür studieren?

- um das machen zu können, was du wirklich möchtest: Jetzt und in der Zukunft
- um Fragen zu stellen und Antworten zu finden
- um komplexe Zusammenhänge verstehen und bewerten zu können
- um Entscheidungen fällen zu können

!! Vielen Dank !!

Öffentliche Ringvorlesung WS 2014/2015

Biodiversität und Biologische Ressourcen

Donnerstags, 18-20 Uhr, Hauptgebäude, Edmund-Siemers-Allee 1, Hörsaal H

