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What is Embodiment?

Here, in the Cognitive Psychology
sense (situatedness, to have a 
physical location and form in the 
world)

M. V. Butz and E. F. Kutter. How the Mind Comes into Being, 2017

How Does It Affect The Way We Function?

Embodied Cognition

Three aspects from an AI perspective
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Aspect 1: 
Perception-Action Loop



Active Perception – Getting More Info 
Through Embodiment

4

(Jeannette Bohg, 2011)
Scene Understanding through Interactive Perception 5

Fig. 2. The figure shows two examples of scenes where initializing the segmentation
with two points instead of one will resolve the situation.

sizes. Since the original method only supports one foreground object, is has been
extended to multiple objects for the purpose of this study.

Using pixel colors represented as histograms in HSV space, foreground ob-
jects are modeled as 3D ellipsoids, while the background is modeled as a com-
bination of planar surfaces, such as a table-top, and uniform clutter. This is
done statistically using an iterative EM-framework, that tries to maximize the
likelihood of the corresponding set of model parameters �t, given color and dis-
parity measurements. By means of belief propagation the unknown segmentation
is marginalized out, which is unlike typical methods using graph-cuts, that si-
multaneously find a MAP solution of both parameters and segmentation. The
resulting segmentation LA

t is given by the most likely labeling given �t after EM
convergence. Thus the method could be viewed more as modeling objects, than
a segmentation approach, which makes is suitable for our particular purpose,
where robust estimation of object centroids and extents is of essence.

In cases where the modeling is unable to capture the complexity of the scene,
the segmentation system can be expected to fail. In particular, the disparity cue,
while helping capture heterogeneously colored objects, also captures other parts
of the scene in close proximity to the object. This is true for objects placed on
a supporting surface, as the di�erence in disparity is insignificant in the area
around the points of contact. In [3, 4] this is compensated for with the inclusion
of a surface component in the background model. This does, however, not solve
the problem of two objects standing in close proximity, which are often captured
by the same segment. However, if we were provided with the correct number
of objects, we could have initialized the correct number of segments, and the
method would have found a likely segmentation. Examples of this being done
successfully can be seen in Fig. 2.

From the current segmentation LA
t we get a hypothesis hA

t detailing the
composition of the scene. Due to the issues discussed above, we cannot be sure
of the correctness of this hypothesis, in particular whether segments correspond
to one or more objects. To verify the correctness of hA

t , the hypothesis has to
be tested. In the next section we will show how this can be done by pushing a
hypothesis and verifying whether the generated optical flow is consistent with
it. If the hypothesis is incorrect, the next iteration of the loop will be informed
that the segment in question contains two objects.

(Niklas Bergström, 2011)

 

 

initial configuration
observation
simulated

(Püren Güler, 2015)



Embodiment Changes What We Need To 
Perceive – Object Affordances

After (Bülthoff and Bülthoff, 2003)

5M. V. Butz and E. F. Kutter. How the Mind Comes into Being, 2017
J. J. Gibson. The Ecological Approach to Visual Perception, 1979



Object-Action (~Affordance) Recognition

6H. Kjellström, J. Romero, and D. Kragic. Visual object-action recognition: Inferring object affordances from human 
demonstration. Computer Vision and Image Understanding, 115:81-90, 2011
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7H. Kjellström, J. Romero, and D. Kragic. Visual object-action recognition: Inferring object affordances from human 
demonstration. Computer Vision and Image Understanding, 115:81-90, 2011

book! magazine! box! book! hammer! box!
box+pitcher!

box! cup!
cup+pitcher!

book! magazine! box! book! hammer! box!
box+pitcher!

box! cup!
cup+pitcher!

open! open! open! hammer! hammer! pour! pour!

open! open! open! hammer! hammer! pour! pour!



Aspect 2: 
Low Communication Bandwidth



Humans are Good at Communicating with
Others – Artificial Systems Need to Be 
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Why is Human Communication Hard?

Embodiment factor

Human: 
Computer: 

Conclusions
1. Embodiment makes understanding hard
2. Need to emulate embodiment in artificial agent to enable

understanding

10N. D. Lawrence. Living Together: Mind and Machine Intelligence. arXiv:1705.07996v1, 2017

E =
computing power

communication bandwidth

E ≈ 10

E ≈ 10
16



Generative Probabilistic Framework for 
Social Signal Processing

Encoding	

Decoding	

Internal	
state	

=	a	state	or	variable	 =	a	process	or	func7on	

Intent	

Personality	

Effect	 Person	B	
behavior	

Person	A	
behavior	

Person	A	 Person	B	

Social	
cogni7on	

YA	

YB	

XA	
ZAi	

ZAp	

ZAe	

Person	B	
seman7cs	Decoding	

Interpreta7on	

ZAt	

WB	

Person	A	
seman7cs	

WA	

11Adapted from D. MacKay. Formal analysis of communicative processes. In Non-Verbal Communication, pp 16-21, 1972
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Perception and Production of
Gaze Aversion Behavior

Y. Zhang, J. Beskow, and H. Kjellström. Look but don't stare: Mutual gaze interaction in social robots. International 
Conference on Social Robotics, 2017

Yanxia Zhang
PostDoc 2016
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Conference on Social Robotics, 2017

Yanxia Zhang
PostDoc 2016



14
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Perception and Production of
Gaze Aversion Behavior

Y. Zhang, J. Beskow, and H. Kjellström. Look but don't stare: Mutual gaze interaction in social robots. International 
Conference on Social Robotics, 2017

Yanxia Zhang
PostDoc 2016



Predicting Motion of Human         
Collaborator

Fully-connected temporal encoder-decoders –
generative models of human motion
Input: past motion (mocap)    Output: future motion

16

Symmetric temporal encoder

Convolutional temporal encoder

Hierarchical temporal encoder

J. Bütepage, M. Black, D. Kragic, and H. Kjellström. Deep representation learning for human motion prediction and 
classification. IEEE Conference on Computer Vision and Pattern Recognition, 2017

Judith Bütepage
Joint with Danica Kragic



Predicting Motion of Human           
Collaborator

Solution: 
Conditional variational autoencoders [1] trained on skeletal data 
obtained from RGB depth images

[1] K. Sohn, H. Lee, and X. Yan, Learning structured output representation using deep conditional 
generative models. NIPS, 2015

17J. Bütepage, H. Kjellström, and D. Kragic. Anticipating many futures: Online human motion prediction and synthesis for 
human-robot collaboration. IEEE International Conference on Robotics and Automation, 2018

Judith Bütepage
Joint with Danica Kragic



Aspect 3: 
Learning from Few Examples



Humans are Good at Continuous and 
Dynamic Learning – Artificial Systems Need 
to Be

19



Embodiment Shapes the Way We Learn –
Learning from Few Examples

20B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman. Building machines that learn and think like people.
Behavioral and Brain Sciences 24:1-101, 2016

State of the art ML algorithm Toddler

”This is an elephant!”

”These are elephants” ”This is a drawing of an elephant”



Embodiment Shapes the Way We Learn –
But Still Learn from Many Examples?

21

Alternative strategy – provide enough training data! 
Crowd Sourcing

But in some cases
• High statespace complexity (causal chains etc)
• Data expensive (medical applications etc)
• Interpretability needed (financial, medical applications etc)

The Robo Brain project (http://robobrain.me/) Tesla, Google, Uber, Nexar, Daimler, VW, Volvo, …



Structured Latent Representation –
Inter-Battery Topic Model

22C. Zhang, H. Kjellström, and C. H. Ek. Inter-battery topic representation learning. European Conference on Computer 
Vision, 2016
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Abstract

In this paper we present the Inter-Battery Topic Model

(IBTM). Our approach extends traditional topic models to

learn a factorized latent variable representation. The struc-

tured representation leads to a model that marries bene-

fits traditionally associated with a discriminative approach

such as feature selection with those of a generative model

such as principled regularisation and ability to handle miss-

ing data. The factorization is provided by presenting data

in terms of aligned pairs of observations providing means

for selecting a representation which separately models top-

ics that exists in both views from the topics that are unique

to a single view. This structured consolidation allows for

efficient and robust inference. Learning is performed in a

Bayesian fashion by maximising a rigorours bound on the

log-likelihood. We illustrate the benefit of the model on a

synthetic dataset, and the model is then evaluated in both

single- and multi-modality settings on two different classifi-

cation tasks.

1. Introduction

The representation of an image have a large impact on
the ease and efficiency with which inference can be per-
formed. This has generated a large interest in directly learn-
ing representation from data [1]. Generative models for rep-
resentation learning see the desired representation as an un-
observed latent variable [16, 4, 10]. Topic models, which
are generally a group of models based on Latent Dirichlet
Allocation (LDA) [4], have been used to great success for
learning representations suitable for computer vision tasks
[6, 7, 24]. A topic model learns a set of topics, which are
distributions over words (in computer vision applications,
visual words) and represent each document (in computer vi-
sion applications, image or video) as a distribution over top-
ics. Since it is a generative model, the learned representa-
tion will provide rich information about the structure of the
data with high interoperability. It provides a highly compact
representation and can handle incomplete data, to a high de-
gree comparing to other type of representation methodolo-

. . .

Private information

. . .

Shared information

. . .

Private information

Figure 1. An example of modeling ”a cup of coffee” images. Dif-
ferent images with a cup of coffee all share certain patterns, such as
cup handles, cup brims, etc. Moreover, each image also contains
patterns that are not immediately related to the ”cup of coffee” la-
bel, such as the rose or the coffee beans. They can be thought of
as private for each image, or instance-specific.

gies. Topic models have been tested in many applications
with successful performance. As all other latent space prob-
abilistic models, the topic distribution can be easily adapted
with different distributions with respect to the input types.
In this paper, we will use an LDA model as our basic frame-
work and apply an effective factored representation learning
scheme.

modeling the essence of the information among all infor-
mation for a particular task has shown to provide more in-
terpretable results and achieve better results on performance
[17, 5, 21, 7, 18, 23]. For example, for object classifica-
tion, extracting the key feature about the object out from the
intra-class variations and background information is key to
the performance. The idea of factorized representation can
traced back to the work, ’An Inter-Battery Method of Fac-
tory Analysis’ [17], hence, we name the model presented in
this paper Inter-Battery Topic Model (IBTM).

Imagine a scenario in which we want to visually repre-
sent ”a cup of coffee”, illustrated in Figure 1. Images with
this label commonly contain a cup of coffee, however, there
is other information that is not correlated to this labeling,
e.g., the rose and the table in the first image and the coffee
beans in the second image. One can think of the information

1

Cheng Zhang 
PhD 2016



Structured Latent Representation –
Inter-Battery Topic Model

…

23C. Zhang, H. Kjellström, and C. H. Ek. Inter-battery topic representation learning. European Conference on Computer 
Vision, 2016

I prepared a cup of 
coffee with a red rose for 
my boyfriend.

cup rose

I; and; boyfriend …

private information

private information

shared information

Cheng Zhang 
PhD 2016



Structured Latent Representation –
Inter-Battery Topic Model

24C. Zhang, H. Kjellström, and C. H. Ek. Inter-battery topic representation learning. European Conference on Computer 
Vision, 2016

Cheng Zhang 
PhD 2016



Structured Latent Representation –
Inter-Battery Topic Model

Better classification results on ImageNet than a 
regular CNN structure

25

Cheng Zhang 
PhD 2016

C. Zhang, H. Kjellström, and C. H. Ek. Inter-battery topic representation learning. European Conference on Computer 
Vision, 2016



Dense

Principled Combination of Logic and     
Deep Learning
Probabilistic framework

Deep Gaussian Processes (Neil Lawrence et al.)
Deep Exponential Families (David Blei et al.)

Sparsity/structural prior
As simple and ”logic-like” representation as possible

Expert/Intutitive physics/intuitive psychology priors
Probabilistic framework enables principled integration of additional priors

Coming soon… J

26

Sparse

Dense
Dense

Dense

Dense

Sparse

Sparse

Sparse

Sparse

SparseSemi
D
a
t
a

Dense

Semi

Samuel Murray



Conclusion

Embodiment shapes the way humans interact and learn

1. Perception-action loop

2. Low communication bandwidth

3. Learning from few examples

Take it into consideration when designing embodied
artificial systems!
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