Chair of Cognitive Modeling Department of Computer Science & Department of Psychology Faculty of Science University of Tübingen



# An Integrative, Event-Predictive Theory of Cognition

## Behavioral Evidence and Artificial Neural Network Models



## Example 1: The Disappearing Hand Trick (closely related to the Rubber Hand Illusion)



by Roger Newport, Helen Gilpin, & Catherine Preston



## **General Explanation of the Disappearing Hand Trick**

Our brain attempts to

continuously maintain a

consistent postural "image" of

our own body's current state.

(body posture as well as its position and orientation relative to the outside environment)



### Example 2: Levesque's Winograd Schema Challenge

(Levesque, 2011), The Winograd Schema Challenge

• Consider the following sentence:

The ball fits into the suitcase, because it is **large**.

Grammatical regularities lead to (slight) garden path effect:

> Pronoun is more likely to reference the subject, i.e., "the ball".

• Which leads to **surprise** and a revision of the pronoun referent model.



Our brain attempts to

continuously construct a

consistent semantic "image" of

the described state of affairs.



5 | Martin V. Butz | Event-Predictive Cognition

## **General Explanation for Both Examples**

- Our brain attempts to continuously construct (on the fly) a consistent postural / semantic "image" of the perceived state of affairs.
- It predicts next sensory inputs (e.g. words, visual information about the hand) and is surprised when certain predictions are violated, attempting to revise the "image" accordingly.

In the examples:

- Reaching for the other hand yields empty space leading to the disappearing hand illusion and then quickly the revision of the postural image.
- 2. Binding of pronoun *it* yields a "**semantic model**" that indicates a reasoning inconsistency, thus requiring a revision.



- What is a semantic image ?
- > How is it constructed by and within our brain ?
- > Which encodings are involved ?
- How are the involved encodings dynamically (& selectively) activated ?
- How can these encodings be learned ?



### Brain as a Generative / Predictive Model

(cf. e.g. Moshe Bar, Horace Barlow, Lawrence Barsalou, Karl Friston, Peter König, and many others...)

- The brain develops a **generative, predictive model** of the encountered environment in order to interact with it in an effective, goal-directed manner.
- The **free energy principle** allows the formalization of this development including the involved behavior but ...
  - ... the formalism is overly general.
  - > Structural, inductive biases –

that is, tendencies to develop certain encoding structures – must shape cognitive development further!



## **Types of Predictive Encodings & Inductive Biases**

- At least 3 fundamental types of predictive encodings are distinguishable:
  - Spatial
    - E.g.: relative spatial mappings of entities and frames of reference
  - Top-down
    - E.g.: Gestalt-related perceptual expectations
  - Temporal
    - E.g.: Sensorimotor codes but also force-dependent codes
- Significant free energy signal changes lead to the encoding of
  - Events
    - Active set of P.E.s
    - Predictive attractors with low residual error
  - Event boundary / event transition encodings
    Predictions across event attractors

- Event-schemata can be formed, which encode
  - **Preconditions** necessary to initiate an event;
  - Final consequences that are typically reached when the event ends;
  - The event code itself.
- Hierarchically organized event encodings enable
  - hierarchical, conceptual, goal-directed planning / reinforcement learning and behavioral control;
  - conceptual and hypothetical reasoning.



## **Nested Event Schemata Yield Hierarchical Structure**

Event Boundary



#### • Events

- Predictive (probabilistic) encoding **network** of how (sensorimotor, -force, & more abstract) dynamics unfold over time.
- Event Boundaries
  - Conditional predictive encodings of event transitions.
- Event Hierarchy
  - Hierarchical / taxonomical structure of events, event boundaries and their typical interactions.



## **Unfolding Predictive & Active Inferences**



Butz, M. V. (2016). Towards a Unified Sub-Symbolic Computational Theory of Cognition. *Frontiers in Psychology*, *7*, 10.3389/fpsyg.2016.00925. Butz, M. V. & Kutter, E. F. (2017). How the Mind Comes Into Being: Introducing Cognitive Science from a

Functional and Computational Perspective. Oxford, UK: Oxford University Press.

## "The ball fits into the suitcase, because it is large." **The ball ...**







"The ball fits into the suitcase, because it is large."

... fits into ...









## "The ball fits into the suitcase, because it is large." ... the suitcase









## "The ball ... fits into ... the suitcase."



16 | Martin V. Butz | Event-Predictive Cognition





"The ball fits into the suitcase .... "



"... because it is large."

#### This implies:

"Was it small, then the first part of the sentence would be false."

#### Counterfactual reasoning.

- "... because **the ball** is large?"
- > "Was the ball small, the ball would still fit.





"The ball fits into the suitcase .... "



"... because it is large."

#### This implies:

"Was it small, then the first part of the sentence would be false."

#### Counterfactual reasoning.

"... because the **suitcase** is large?"

"Was the suitcase small, the ball would NOT fit."





18 | Martin V. Butz | Event-Predictive Cognition

## Neuro-Computational Cognitive Models

... and some psychological experiments.

- 1. Event Dynamics
- 2. Inference of and within Events
- 3. Event Boundary Anticipation
- 4. Event Schemata: Segmentation and Inference







Learning to Infer Biological Motion Events

A Perspective Taking, Gestalt Inference, & Mirror Neuron Model

## INFERENCE OF BIOLOGICAL MOTION

Schrodt, F. (2018). PhD dissertation.

Schrodt, F., & Butz, M. V. (2016). Just Imagine! Learning to Emulate and Infer Actions with a Stochastic Generative Architecture. *Frontiers in Robotics and AI*. doi:10.3389/frobt.2016.00005



20 | Martin V. Butz | Event-Predictive Cognition

## **An ANN of Biological Motion Inference**



- "Intention module" clusters types of motion via a supervised temporal autoencoder
- Spatiotemporal autoencoders predict cluster-interdependencies and dynamics over time
- Top-down predictive autoencoders yield biological motion clusters
- Separation into posture, motion direction, & magnitude Gestalt encodings
- Perspective- & focus-relative encodings



## **Generative ANN Model Evaluation**



## **Exemplar Model Capabilities**



Stimulus and FORsvs.Model ExpectationStimulus and FORsvs.Model Expectation(1/5 speed)(1/5 speed)(1/5 speed)





## Sensorimotor forward model used for control NEURAL ACTIVE-INFERENCE-BASED IMAGINING AND CONTROL

Sebastian Otte, Theresa Schmitt, Karl Friston, & Martin V. Butz (2017). Inferring adaptive goaldirected behavior within recurrent neural networks. *ICANN 2017*.



## The RNN Model

- Recurrent neural network architecture (LSTM) learns a sensorimotor forward model.
- Scenario: A "rocket" with simulated gravity and two thrust motors

#### "Rocket" scenario



- Input to the LSTM:
  - Current location of rocket and current motor activity
- Output of the LSTM:
  - Resulting velocity and next location of rocket
- During training:
  - Training samples of somewhat systematic random explorations
- During testing:
  - Active inference-based motor control derivation



#### Controlling a Glider (Otte, Schmitt, Friston, & Butz, ICANN 2017)

- Learning a sensorimotor forward model with an RNN (LSTM)
- Control via active inference:
  - Attempting to reach goal state  $M_G$
  - Inferring policy  $\pi$  by maximizing expected  $Q_{\tau}$  over expected future model states  $M_{\tau}$  and observations  $o_{\tau}$ .

$$Q_{\tau}(\pi, s_{t}) = -D_{KL}[P(\boldsymbol{o}_{\tau}|\boldsymbol{M}_{\tau})||P(\boldsymbol{o}_{\tau}|\boldsymbol{M}_{G})] - E_{\pi}[H(P(\boldsymbol{o}_{\tau}|\boldsymbol{M}_{\tau}))]$$





Sebastian Otte, Theresa Schmitt, Karl Friston, & Martin V. Butz (2017). Inferring adaptive goal-directed behavior within recurrent neural networks. *ICANN 2017*.



## Concurrent Event Inference and Goal-Directed Control REPRISE: A RETROSPECTIVE & PROSPECTIVE INFERENCE SCHEME

Martin V. Butz, David Bilkey, Alistair Knott, & Sebastian Otte (in press). REPRISE: A Retrospective and Prospective Inference Scheme. CogSci 2018.



27 | Martin V. Butz | Event-Predictive Cognition

## The Setup

- Recurrent neural network architecture (LSTM) learns a sensorimotor forward model.
  - > With dedicated, stable hidden state event indicator neurons
- 3 "Event" Scenario:
  - 1. "Rocket" simulation (2 thrust directions, inertia gravity)
  - 2. Stepper simulation (4 combinable directional step motions, no inertia)
  - 3. Glider simulation (4 thrust directions, inertia)
- Input to the LSTM:
  - Current location of the "vehicle" and current motor activity
- Output of the LSTM:
  - Resulting motion of rocket
- During training:
  - Switching between three vehicles.
  - Switch triggers
    - 1. Retrospective (stable) hidden state inference
    - 2. BPTT learning
- During testing:
  - Retrospection: hidden state inference
  - Prospection: Active inference-based motor control derivation



#### "Stepper" event



"Glider" event





Martin V. Butz, David Bilkey, Alistair Knott, & Sebastian Otte (in press). REPRISE: A Retrospective and Prospective Inference Scheme. CogSci 2018.

## **REPRISE: Retro- and Prospective Inference Dynamics**





29 | Martin V. Butz | Event-Predictive Cognition

Martin V. Butz, David Bilkey, Alistair Knott, & Sebastian Otte (in press). REPRISE: A Retrospective and Prospective Inference Scheme. CogSci 2018.

### **REPRISE Performance**





#### **Goal-Oriented Object Interactions**

## ANTICIPATING UPCOMING EVENT BOUNDARIES

Belardinelli, A. & Butz, M. V. (2013). Gaze strategies in object identification and manipulation. *Annual Conference on Cognitive Science (CogSci 2013)*, 1875-1880.

Belardinelli, A., Herbort, O., & Butz, M. V. (2015). Goal-oriented gaze strategies afforded by object interaction. *Vision Research, 106*, 47–57.

Belardinelli, A., Stepper, M. Y., & Butz, M. V. (2016). It's in the eyes: Planning precise manual actions before execution. *Journal of Vision*, *16(1)*, 18. doi:10.1167/16.1.18

Belardinelli, A., Barabas, M., Himmelbach, M., & Butz, M. V. (2016). Anticipatory eye fixations reveal tool knowledge for tool interaction. *Experimental Brain Research*, 234, 2415–2431.



## **Videos of Typical Trial Interactions**

21em 8em 95cm 13.5 6cm 5.5cm

3.5cm

<u>Task:</u> Grasp & *Drink* from object

#### <u>Task:</u> Grasp & *Handover* object





32 | Martin V. Butz | Event-Predictive Cognition

## Time Course of the Average Trial

• Note the normalized time window from the first mapped fixation until grasp onset.





33 | Martin V. Butz | Event-Predictive Cognition

# Heat maps until object grasp: Objects are fixated in the light of the final event

#### Task: Grasp & drink from object

Grasp and hand over object



Task:

34 | Martin V. Butz | Event-Predictive Cognition



## **Anticipatory Eye Behavior – Time Course**





| 1. | Event Dynamics                             |
|----|--------------------------------------------|
| 2. | Inference of and within Events             |
| 3. | b) Event Boundary Anticipation (Body)      |
| 4. | Event Schemata: Segmentation and Inference |

Manual peripersonal space maps into the future

## ANTICIPATING BODILY STATES AT FUTURE EVENT BOUNDARY

Belardinelli, A., Lohmann, J., Farnè, A., & Butz, M. V. (2018). Mental space maps into the future. *Cognition*, *176*, 65–73. doi:10.1016/j.cognition.2018.03.007



## **Event-Predictive Encodings in Action**

- Focus:
  - Manual interactions with objects
  - Peripersonal space around the hand
    - > Known to integrate multiple sensory information sources.
    - Surrounds hand / face and other body parts.
    - $\succ$  Can be modified via tool usage.
- Dual task paradigm with
  - 1. Expected cross-modal congruency
    - Does a light flash close to FUTURE FINGER POSITIONS influence the detection of vibrotactile stimulations of the respective fingers?
  - 2. Task-oriented object interaction
    - Transport an object to the right and place it upright



## **Event-Predictive Encodings in Action – Trial Schedule**





38 | Martin V. Butz | Event-Predictive Cognition

Belardinelli, A., Lohmann, J., Farnè, A., & Butz, M. V. (2018). Mental space maps into the future. *Cognition*, 176, 65–73. doi:10.1016/j.cognition.2018.03.007

## **Cross-Modal Congruency Effect**

Vibration detection response time is influenced by the visual distractor in anticipation of future hand posture (finger locations). (data shown is averaged over all three SOAs.)





39 | Martin V. Butz | Event-Predictive Cognition

Belardinelli, A., Lohmann, J., Farnè, A., & Butz, M. V. (2018). Mental space maps into the future. *Cognition*, 176, 65–73. doi:10.1016/j.cognition.2018.03.007



## A computational model of event & event transition detection, abstraction, and planning via free-energy based (active) inference **LEARNING EVENT TAXONOMIES FROM SENSORIMOTOR EXPERIENCES**

Gumbsch, C., Kneissler, J., & Butz, M. V. (2016). Learning behavior-grounded rvent segmentations. Proceedings of the 38th Annual Meeting of the Cognitive Science Society (pp. 1787–1792). Austin, TX: Cognitive Science Society. Gumbsch, C., Otte, S., & Butz, M. V. (2017). A computational model for the dynamical learning of event taxonomies. Proceedings of the 39th Annual Meeting of the Cognitive Science Society (pp. 452–457). London, UK: Cognitive Science Society.

Gumbsch, C. (2018). Master dissertation.



## **Computational Model of Event Processing and Inference**

#### **Predictive processing & learning**



## Hierarchical, active-inference-based goal-directed behavior



- Event Models are sensorimotor forward models
- Event Boundary Models are multivariate Gaussians
- **Predictive Perceptual Space** yields information fusion and imaginations
- Motivations selectively activate EBMs to reach anticipated reward
- Motor system executes motor commands and provides efference copies
- **Observations** yield relative locations of hand, mouth, and object, as well as object properties.

Gumbsch, C., Otte, S., & Butz, M. V. (2017). A computational model for the dynamical learning of event taxonomies. Proceedings of the 39th Annual Meeting of the Cognitive Science Society (pp. 452–457). London, UK: Cognitive Science Society.



## **Learned Behavioral Events**

• Starting with Differential Extrinsic Plasticity control

(Ralf Der & Georg Martius)





42 | Martin V. Butz | Event-Predictive Cognition

## **Goal-Directed Event-Predictive Control**

### **Reaching Goals**

## Collecting & Transporting Objects







43 | Martin V. Butz | Event-Predictive Cognition

Gumbsch, C. (2018). Master dissertation.

## Hexapod Inferring Event Boundaries and Event Schemata









A Mario clone to explore the learning of event schema rules and the link to language.

## EVENT-ORIENTED ABSTRACTIONS TOWARDS LANGUAGE COMPREHENSION



## Mario's Brain – SEMLINCS Architecture





Schrodt, F., Kneissler, J., Ehrenfeld, S., & Butz, M. V. (2017). Mario becomes cognitive. *Topics in Cognitive Science*, *9*(2), 343–373. doi:10.1111/tops.12252

## **Main Features of SEMLINCS Architecture**



- Speech interface enables
  - querying and manipulating:
    - Event schema knowledge
    - Goal selection
    - Motivational system state
    - Current motor commands.
  - autonomously agreeing on (sequential) joint action plans.

- Motivational system
  - Based on homeostatic variables;
  - Allows the autonomous selection of goals.
- Event schema knowledge in the form of condition-action-effect rules...
  - ... is learned from surprising event signals (e.g. disappearing object);
  - ... allows temporal forward predictions and inverse planning on a conceptual level.
- Planning:
  - Sensorimotor planning is currently hard-coded (A\*) relying on game engine (simulator)
  - Schematic planning relies on event schema rule knowledge (i.e. production rules)



Schrodt, F., Kneissler, J., Ehrenfeld, S., & Butz, M. V. (2017). Mario becomes cognitive. *Topics in Cognitive Science*, *9*(*2*), 343–373. doi:10.1111/tops.12252

### **Example 1: Learning from Object** Interaction Events and Observations





48 | Martin V. Butz | Event-Predictive Cognition

Schrodt, F., Kneissler, J., Ehrenfeld, S., & Butz, M. V. (2017). Mario becomes cognitive. *Topics in Cognitive Science*, *9*(2), 343–373. doi:10.1111/tops.12252 Mario Becomes Social!" video available online on YouTube.

## Example 2: Coordinating Plans

Mario







Schrodt, F., Röhm, Y., & Butz, M. V. (2017). An Event-Schematic, Cooperative, Cognitive Architecture Plays Super Mario. In *Proceedings of EUCognition* 2016: *Cognitive Robot Architectures* (pp. 10–15).



## (Many) Open Challenges

For ANN-based neuro-cognitive models...

- More complex
- More real
- Optimizing motion primitives
- Episodic memory
- Emergent linkage to linguistic structure
- Conceptual abstractions beyond sensorimotor behaviors



