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Introduction

e Lecturer at the Department of Computer Science at the
University of Sheffield

o Member of the natural language processing (NLP) and
machine learning (ML) research groups

e Research in developing ML methods for:

o natural language understanding: convert text into
(machine-readable) meaning representations

o natural language generation: convert meaning
representations into (human-readable) text

o applications encompassing both directions



Research Context



Natural Language Understanding (NLU)
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e Named entity recognition (Vlachos et al., PSB 2006)
e Relation extraction (Vlachos and Craven, CoONLL 2011)
e Semantic parsing (Goodman et al., ACL 2016)




Natural Language Generation (NLG)

INPUT:

predicate= INFORM

name = "The Saffron Brasserie"
type = placetoeat

eattype = restaurant

area = riverside, "addenbrookes"
near = "The Cambridge Squash", "The Mill"

OuUTPUT:
The Saffron Brasserie is a restaurant at the side of the river near
the Cambridge Squash and the Mill in the area of Addenbrookes

J

e SOTA on 3 datasets (Lampouras and Vlachos, Coling 2016)
e NN-based system most fluent among 20 systems in Eknd2End
NLG (Chen et al., 2018)



Applications encompassing both directions

Google translate

From: Tamil v| E=] To: Telugu v

e Translation Quality Estimation (Beck et al., WMT 2016)

e Digital Personal Assistants (Vlachos and Clark, TACL2014)

e Automated Fact Checking (Vlachos and Riedel, Computational
Social Science and NLP 2014)



Machine Learning for Natural Language

Learning from data allows us to adapt rapidly to:
e language evolution

e different applications

Compared to rule-based approaches:
e wider coverage

e weighted feature combinations
e feature learning with neural networks/deep learning
o reuse models across tasks (trade-off between feature
engineering vs architecture engineering)
o facilitate focus on novel tasks



This talk

e Improved structure prediction with imitation learning

e Ability to predict labels unseen during training using zero-shot
learning with neural networks

e A challenge to advance ML, NLP and artificial intelligence:
automated fact checking



Imitation learning
for structured
prediction



Structured prediction in NLP is everywhere
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Imitation learning for structured prediction

e Assume human-annotated
input-output (x,y) for
supervised training

input sentence X

e Train a classifier to predict the
actions (a) constructing the
output y

e Actions not annotated; imitation

learning is semi-supervised .
mput sentence X




Imitation learning in robotics

Machine

Expert Learning
Demonstrations Algorithm

Meta-learning: better model (=policy) by generating better training
data from expert demonstrations
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Relation to reinforcement learning

CAUTION
TEENAGE
DRIVER

CoMmGTOARIY
MEAR YOU S00M!

e Both reinforcement and imitation learning learn a
classifier/policy to maximize reward
e Learning in imitation learning is facilitated by an expert
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Breaking output into actions constructing it

actions:

states:

input sentence X
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Incremental structured prediction

A classifier f predicting actions to construct the output:
&, =arg max f(a, x),
acA
5’ = output Q9 —arg max f(a, X, &1), ce
acA

ay =argmax f(a,X,4&1...4y_1)
acA

v’ Use our favourite classifier

v No need to enumerate all possible outputs

v No modelling restrictions on features
Prone to error propagation

x Classifier not trained w.r.t. task-level loss
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Imitation learning

Improve incremental structured prediction by:
e addressing error-propagation
e training wrt the task-level loss function

Meta-learning: use our favourite classifier and features, but generate
better training data

Can handle more complex problems than joint inference approaches:

e no output enumeration = no need for dynamic programming

e no dynamic programming = no modelling restrictions such as
Markov assumptions used in conditional random fields, etc.
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Imitation learning for part of speech tagging

Human annotated tags:

Noun R .
vt S
Modal x o
Pronoun R e .
I can fly

expert policy: at each word return the correct tag

loss: number of incorrect tags
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Imitation learning for part of speech tagging

Standard incremental structured prediction:

Noun @ tr s i e e i aa s .

Verb :“.”““““.;.;;;;;;*‘*
Modal l / T I j

Pronoun * ............................... -
I can fly
word label features
I Pronoun token=I, prev=NULL ...
can Modal token=can, prev=Pronoun ...

fly Verb token=fly, prev=Modal ...

18



Imitation learning for part of speech tagging

Labels as costs:

Noun U

vt B

Modal S */'
T -t
I can fly

word Pronoun Modal Verb |Noun features
I 0 1 1 1 token=I, prev=NULL...
can 1 0 1 1 token=can, prev=Pronoun...
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fly 1 1 0 1 token=fly, prev=Modal...



Imitation learning for part of speech tagging

Breaking down action costing:

Noun e O < .
Verb . ............... O ----- ) * COSt — 1
rozllin o;‘ rollout
Modal e ’.'..... > S R— i
: " : g
S :
Pronoun > L —— :
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o rodilimnd ebikintawtith) dtioex paropglicthelsantereect labels
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word BPUesUntoMsdnR e e Qe HeaftigHoa
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token=can, prev=Pronoun...



Imitation learning for part of speech tagging

Mixed rollins/rollouts with the expert policy and the classifier

Noun e / X
Verb .............. X ....... "w *

; ; s”® ;

Modal A A *  eermamen )

Pronoun *' ................ .
I can fly

word Pronoun Modal Verb Noun  features
I 0 1 1 1 token=I, prev=NULL...
can 1 0 2 1 token=can, prev=Pronoun...
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fly 1 1 0 1| token=fly, prev=Verb...



Back to learning how to drive

e Instead of observing the expert drive, let the classifier drive
e The expert gives the correct actions given the classifier’s ones
e The classifier is allowed to explore the effect of its own actions
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Imitation learning for NLP

e Kxplores only the parts of the search space likely to be
encountered = applicable to complex outputs

e Training data generation mixing expert and classifier =
addresses error propagation

e Task loss only used on complete outputs = can train against
non-decomposable loss funetions such as BLEU, ROUGE, etc.

e Addresses a fundamental limitation of incremental predictors,
including recurrent neural networks

More in our EACL 2017 tutorial, but now some real applications
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https://sheffieldnlp.github.io/ImitationLearningTutorialEACL2017/

Imitation learning for semantic parsing
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e C(Convert a syntax tree to a meaning graph

center

e Long complex action sequences (>>100 actions, 10K labels)
e Used in many applications: summarization, generation, etc.



Imitation learning benefits

B standard
B DAGGER
V-DAGGER

dfa bolt xinhua proxy lpp

e DAGGER uses rollins (Ross et al., AISTATS 2011)
e V-DAGGER uses roll-in/-outs (Vlachos and Clark, TACL 2014) »»



Semantic Parsing Kvaluation

60
40

20

0

B Flanigan et al. (2014) - CMU, joint

B Werling et al. (2015) - UStanford,
joint

B Wang et al. (2015)-Brandeis,
incremental

B Pust et al. (2015) - ISI-USC, SMT

B Peng et al. (2015) - Rochester,
Hyperdge

B Artzi et al. (2015) - UWashington,
CCG

B Goodman et al. (2016) -
UCL+Sheffield, Imitation

e Best reported results (Goodman et al., ACL 2016)
e No external resources used, just the training data

e Docker image of parser downloaded >100 times
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Imitation learning for Language Generation

INPUT:

predicate= INFORM

name "The Saffron Brasserie"
type = placetoeat

eattype = restaurant

area riverside, "addenbrookes"
near "The Cambridge Squash", "The Mill"

OUTPUT:

The Saffron Brasserie is a restaurant at the side of the river near
the Cambridge Squash and the Mill in the area of Addenbrookes

J

e Reversed semantic parsing, similar to machine translation (MT)

e Unlike MT, labeled data is rather limited
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Language Generation - Human Evaluation
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e SOTA on three datasets (Lampouras and Vlachos, 2016)
No rules, re-ranking or templates, just two classifiers 28



More imitation learning applications

Own work:
e Biomedical Event Extraction (Vlachos and Craven, CoNLL2011)
e Language Understanding for Digital Personal Assistants
(Vlachos and Clark, TACL 2014)
e Knowledge Base Population (Augenstein et al.,, EMNLP 2015)
e Machine Translation Quality Estimation (Beck et al., WMT
2016)
Others:
e Syntactic dependency parsing
o Dynamic oracles (Goldberg and Nivre, Coling 2012)
o LSTM-based (Ballesteros et al., EMNLP 2016)
o Popular spacy.io NLP toolkit
e C(Coreference resolution (Clark and Manning, ACL 2015)

29



Z.ero-shot
learning with
neural networks



Zero-shot learning

ML models typically can predict only labels they saw in the training
data, e.g. a model trained on cats and dogs can’t recognize birds
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What the computer sees

= 82% cat
15% dog
2% hat

1% mug

image classification

Zero shot learning explores how to predict labels unseen in training
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Stance classification

Given a target concept, e.g. abortion or Hillary Clinton, decide

whether a text is positive/negative/neutral towards the target:
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Z.ero-Shot Stance Classification

Standard supervised learning:
§ = argmax(w, - ¢(z))
yey
e learn weights w for each label y and target ¢t assuming a feature
construction @ for tweet x (e.g. bag-of-words)
e fails for new targets (Trump vs Hillary)

Idea: use the target ¢ in feature construction ¢

y = argmax(w¥ - ¢(z,t;0))
yel
Learn the parameters @ constructing the feature representation
jointly with w using Long Short Term Memory Networks (LSTMs)
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Stance Classification with Conditional LSTMs

Legalization of Abortion A foetus has rights too !

Target Tweet

e One LSTM encodes the target, another LSTM the tweet
e The representation of the tweet is conditioned on the target
e OSame tweet-different target = different stance

34



Results

B SVMs+ngrams
B Conditional LSTM
pkudblab (weak)

B Conditional LSTM +
I I weak supervision

FAVOR AGAINST Macro-F1

e Train on stance-annotated tweets for 5 targets, test on Trump
e State-of-the-art results without training data for target and with
weak supervision (Augenstein et al., EMNLP 2016)
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Z.ero-shot Relation Classification

Relation Subject (X) Object (Y) Text (Premise) Description (Hypothesis)

religious_order lorenzo Ricci Society of Jesus X (August 1, 1703 — November 24, X was a member of the
1775) was an Italian Jesuit, elected group Y
the 18th Superior General of the Y.

director Kispus Erik Balling X is a 1956 Danish romantic com-  The director of X is Y
edy written and directed by Y.
designer Red Baron II Dynamix X is a computer game for the PC, Y is the designer of X

developed by Y and published by
Sierra Entertainment.

Kxtended relation classification using descriptions instead of labeled
data (Obamuyide and Vlachos, under review):

e (Given training for director relation, we can predict designer

e [ormulated the task textual entailment (sentence-pair classification)

36



Results

Dataset Model F1 (%)

ESIM 30.16

LMU-RC CIM 22.20
ESIM 61.32

LIWEIE CIM 63.58

e Good results on two 08 = — -
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Automated fact
checking



A new challenge for Al: Automated fact-checking

Country/ Italy | UK
Immigration

2014 4.92M | 5.05M
2015 5.01M ]| 5.42M
2016 5.03M] 5.64M

(Vlachos and Riedel, 2014)
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What do we want from automated fact-checking?

e Verdict justification, a.k.a. algorithmic transparency
o (Can’t convince otherwise
o Need to check their correctness

e (eneralization to different domains (economy, health, etc.)

e Learn with (relatively) little data

(Viachos and Riedel, 2014)



What claims should we fact-check?

e Does the source of the claim matter?
e Does the linguistic style matter?



Kvidence for or against a claim

Claim: Doctors confirmed the first case of
death by genetically modified food

Tagged: Fake News Hoaxes World News Daily Report

Resolved Added Mar 9

It originated on a fake news website and is therefore false. Emergent is as of now the only
site to offer a full debunking.

Sources

Sources Tracked: 3 Total Shares: 62,188

For Against @
2 ee 1 e

Shares Shares
60,596 1,592
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Results

e 300 claims from debunking
website www.emergent.info

0113}

e Automated stance classification

with 73% accuracy (Ferreira
and Viachos, 2016)

e Advisor to the Fake News
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http://www.emergent.info

New datasets needed

Al

successes follow dataset availability (Wissner-Gross, 2016)

Year | Breakthroughsin Al Datasets (First Available) Algorithms (First Proposed)
Human-level spontaneous speech Spoken Wall Street Journal articles and )
1994 . Hidden Markov Model {1984)
recognition other texts (1991)
e || v e A e . 700,000 Grandmaster chess games, aka Negascout planning algorithm
p Blue defeated GarryKasparov | ., o vded Book” (1991) (1983)
TS Google’s Arabic- and Chinese-to-English 1.8 trillion tokens from Google Web and Statistical machine translation
translation News pages (collected in 2005) algorithm (1988)
IBM Watson became the world Jeopardy! 8"? "_"Ihon dO(Eu_m SHE I Wll_upedla, Mixture-of-Experts algorithm
2011 h i Wiktionary, Wikiquote, and Project
champion Gutenberg (updated in 2010) (1991)
o Google’s GoogleNet object classification ImageNet corpus of 1.5 million labeled Convolution neural network
at near-human performance images and 1,000 object categories (2010) | algorithm (1989)
Google’s Deepmind achieved human ] i
e . . Arcade Learning Environment dataset of i i
2015 | parity in playing 29 Atari games by Q-learning algorithm (1992}

learning general control from video

over 50 Atari games (2013)

Average No. of Years to Breakthrough:

3 years

18 years

300 claims are not enough to learn fact checking
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Fact Extraction and VERification (FEVER)

Claim:

The Rodney King riots took place in the most populous county in the USA. P OR’V ED
Evidence:

[wiki/Los Angeles Riots]: The 1992 Los Angeles riots, also known as the Rodney King riots

were a series of riots, lootings, arsons, and civil disturbances that occurred in Los Angeles County,
California in April and May 1992.

[wiki/Los Angeles County]:Los Angeles County, officially the County of Los Angeles, is the
most populous county in the United States.

e 200K claims verified on Wikipedia (Thorne et al., NAACL 2018)
e 3-way classification:

o The claim is SUPPORTED by the evidence

o The claim is REFUTED by the evidence

o NOT ENOUGH INFORMATION in Wikipedia to verify it
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Annotation process details

e 50 annotators, all native speakers, trained by the authors or more
experienced annotators
e [ixed Wikipedia dump to avoid changes in labels

e One annotator constructs the claim, different annotator verifies it
e Dedicated user interfaces were developed for the task

e (Guidelines were refined through pilot studies

e Advised to spend 2-3 minutes per claim

e Instructed to avoid using their own world knowledge: “Shakira is

Canadian” is NOT ENOUGH INFORMATION
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Annotation findings

e (.68 in Fleiss Kappa inter-annotator agreement on 3.4K claims

o 96.12% precision and 74.84% recall in evidence retrieval: measured
against annotators who were not time-constrained

e C(laims were 7.9 tokens long
e Multi-sentence evidence was chosen for 28.04% of the claims
e [vidence from different pages was chosen for 11.47%

e 7.6% of the mutated claims were excluded due to being too
vague/ambiguous

e [inal verification by the authors: 91.2% correct on 227 claims.
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Results

Unlike previous tasks and datasets, evidence matters:

e a correct label with incorrect supporting evidence is wrong

e a simple approach using TF-IDF-based similarity for evidence
selection and LSTMs for labeling the claim given the evidence
achieved 31.87% acc. (50.91% ignoring evidence)

Room for improvement:
Fact Extraction and Verification (FEVER) shared task

e KMNLP 2018 workshop with Amazon Research Cambridge and
Imperial College
e Interest from academics, industry and journalists and you?
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Research summary

e Imitation learning for structured prediction in NLP
e Zero-shot learning with neural networks
e Automated fact-checking (see our Coling 2018 survey)

Other work:

e active learning (CSL 2008)

e Bayesian non-parametric approaches for NLP (PhD)

e syntax-based neural language models (ACL 2015, with Piotr
Mirowski from Google DeepMind)

e authorship attribution with neural networks (EACL 2017,
Coling 2018)
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Questions?



